Journal of Food Bioactives, ISSN 2637-8752 print, 2637-8779 online |
Journal website www.isnff-jfb.com |
Review
Volume 1, March 2018, pages 56-92
Bioactive components and health effects of pecan nuts and their by-products: a review
Figures
Pecan production in Mexico and United States from 1980 to 2016.
Chemical structures of common phytochemicals in pecan.
Tables
Nutrient | Unit | Content |
---|---|---|
Abbreviations: Kcal, Kilocalories; RAE, retinol activity equivalents; IU, international units. Adapted from USDA (2016). | ||
Proximate composition | ||
Water | g | 3.52 |
Energy | kcal | 691 |
Protein | g | 9.17 |
Total lipid (fat) | g | 71.97 |
Ash | g | 1.49 |
Carbohydrate, by difference | g | 13.86 |
Fiber, total dietary | g | 9.6 |
Sugars, total | g | 3.97 |
Sucrose | g | 3.9 |
Glucose (dextrose) | g | 0.04 |
Fructose | g | 0.04 |
Starch | g | 0.46 |
Minerals | ||
Calcium, Ca | mg | 70 |
Iron, Fe | mg | 2.53 |
Magnesium, Mg | mg | 121 |
Phosphorus, P | mg | 277 |
Potassium, K | mg | 410 |
Sodium, Na | mg | 0 |
Zinc, Zn | mg | 4.53 |
Copper, Cu | mg | 1.2 |
Manganese, Mn | mg | 4.5 |
Selenium, Se | µg | 3.8 |
Fluoride, F | µg | 10 |
Vitamins | ||
Vitamin C, total ascorbic acid | mg | 1.1 |
Thiamin | mg | 0.66 |
Riboflavin | mg | 0.13 |
Niacin | mg | 1.167 |
Pantothenic acid | mg | 0.863 |
Vitamin B-6 | mg | 0.21 |
Folate, total | µg | 22 |
Choline, total | mg | 40.5 |
Betaine | mg | 0.7 |
Vitamin A, RAE | µg | 3 |
Vitamin A, IU | IU | 56 |
Vitamin E (alpha-tocopherol) | mg | 1.4 |
Vitamin K (phylloquinone) | µg | 3.5 |
Compound | Content | Extraction | Comments on the samples | References |
---|---|---|---|---|
Abbreviations: RT, room temperature; DsS, desmethylsterols; PL, phospholipid; PS, phosphatidylserine; PI, phosphatidylinositol; PC, phosphatidylcholine; PA, phosphatidic acid; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; GAE, gallic acid equivalents; TocE, α-tocopherol equivalents. | ||||
Monounsaturated fatty acids (MUFA) | ||||
Oleic acid (w-9) | 56.3–72.5 % | Supercritical fluids | Different cultivars and extraction conditions, residual oil | Alexander et al., 1997; Salvador et al., 2016 |
51.1–75.3 % | Soxhlet with different solvents | Different cultivars, locations, harvest years, tree ages, ripening stages, residual oil, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Salvador et al., 2016; Toro-Vazquez et al., 1999; Venkatachalam et al., 2007; Venkatachalam & Sathe, 2006; Wakeling et al., 2001 | |
38.2–75.0 % | RT with different solvents and extraction protocols | Different cultivars, locations, harvest years, extraction conditions | Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Flores-Córdova et al., 2016; Miraliakbari & Shahidi, 2008b; Ryan et al., 2006; Villarreal-Lozoya et al., 2007 | |
53.9–78.1 % | Mechanical pressing | Different cultivars, harvest years and extraction conditions, commercial oils from different locations | Castelo-Branco et al., 2016; do Prado et al., 2013; Fernandes et al., 2017; Gong et al., 2017; Scapinello et al., 2017 | |
53.0–65.3 % | Pressurized n-butane | Different extraction conditions | Scapinello et al., 2017 | |
Polyunsaturated fatty acids (PUFA) | ||||
Linoleic acid (w-6) | 17.3–33.4 % | Supercritical fluids | Different cultivars and extraction conditions, residual oil | Alexander et al., 1997; Salvador et al., 2016 |
16.2–37.5 % | Soxhlet with different solvents | Different cultivars, locations, harvest years, tree ages, ripening stages, residual oil, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Salvador et al., 2016; Toro-Vazquez et al., 1999; Venkatachalam et al., 2007; Venkatachalam & Sathe, 2006; Wakeling et al., 2001 | |
15.0–50.3 % | RT with different solvents and extraction protocols | Different cultivars, locations, harvest years, extraction conditions | Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Flores-Córdova et al., 2016; Miraliakbari & Shahidi, 2008b; Ryan et al., 2006; Villarreal-Lozoya et al., 2007 | |
13.6–32.9 % | Mechanical pressing | Different cultivars, harvest years and extraction conditions, commercial oils from different locations | Castelo-Branco et al., 2016; do Prado et al., 2013; Fernandes et al., 2017; Gong et al., 2017; Scapinello et al., 2017 | |
24.8–26.2 % | Pressurized n-butane | Different extraction conditions | Scapinello et al. 2017 | |
Linolenic acid (w-3) | ND–4.9 % | Supercritical fluids | Different cultivars and extraction conditions, residual oil | Alexander et al., 1997; Salvador et al., 2016 |
0.2–3.0 % | Soxhlet with different solvents | Different cultivars, locations, harvest years, tree ages, ripening stages, residual oil, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Salvador et al., 2016; Toro-Vazquez et al., 1999; Venkatachalam et al., 2007; Venkatachalam & Sathe, 2006; Wakeling et al., 2001 | |
0.7–5.0 % | RT with different solvents and extraction protocols | Different cultivars, locations, harvest years, extraction conditions | Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008b; Ryan et al., 2006; Villarreal-Lozoya et al., 2007 | |
0.7–1.5 % | Mechanical pressing | Different cultivars, harvest years and extraction conditions, commercial oils from different locations | Castelo-Branco et al., 2016; do Prado et al., 2013; Fernandes et al., 2017; Gong et al., 2017; Scapinello et al., 2017 | |
1.0–1.1 % | Pressurized n-butane | Different extraction conditions | Scapinello et al. 2017 | |
Tocopherols | ||||
α | ND–122.4 mg/Kg oil | Soxhlet oil extraction, direct injection in HPLC | Different cultivars, locations, tree ages, ripening stages, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Kornsteiner et al., 2006; Toro-Vazquez et al., 1999 |
1.4–363.2 mg/Kg oil | Mechanical pressing of oil, direct injection in HPLC | Different cultivars and harvest years, commercial oils from different locations | Castelo-Branco et al., 2016; do Prado et al., 2013; Fernandes et al., 2017; Gong et al., 2017 | |
5.9–18.2 mg/Kg oil | RT oil extraction with different solvents, saponification before HPLC | Different locations and extraction conditions | Derewiaka et al., 2014; Miraliakbari & Shahidi, 2008b; Miraliakbari & Shahidi, 2008c | |
0.6–1.9 mg/100 g nut | RT or Soxhlet oil extraction, direct injection in HPLC | Different cultivars and years | Chun et al., 2002; Robbins et al., 2015; Robbins et al., 2011; USDA, 2016 | |
0.4–1.3 mg/100g nut | Cold saponification of ground nuts | Different cultivars | Perez-Fernandez et al., 2017 | |
γ | 21.0– 4,650 mg/Kg oil | Soxhlet oil extraction, direct injection in HPLC | Different cultivars, locations, tree ages, ripening stages, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Kornsteiner et al., 2006; Toro-Vazquez et al., 1999 |
197.1–381.0 mg/Kg oil | Mechanical pressing of oil, direct injection in HPLC | Different cultivars and harvest years, commercial oils from different locations | Castelo-Branco et al., 2016; do Prado et al., 2013; Fernandes et al., 2017; Gong et al., 2017 | |
70.8–472.9 mg/Kg oil | RT oil extraction with different solvents, saponification before HPLC | Different locations and extraction conditions | Derewiaka et al., 2014; Miraliakbari & Shahidi, 2008b; Miraliakbari & Shahidi, 2008c | |
72.0–135.0 mg/Kg oil | RT oil extraction, liquid/liquid extraction of tocopherols | Different cultivars, locations and years | Domínguez-Avila et al., 2013; Villarreal-Lozoya et al., 2007 | |
16.0–30.5 mg/100 g nut | RT or Soxhlet oil extraction, direct injection in HPLC | Different cultivars and years | Chun et al., 2002; Robbins et al., 2015; Robbins et al., 2011; USDA, 2016 | |
8.7–31.1 mg/100g nut | Cold saponification of ground nuts | Different cultivars | Perez-Fernandez et al., 2017 | |
δ | ND–112.2 mg/Kg oil | Soxhlet oil extraction, direct injection in HPLC | Different cultivars, locations, tree ages, ripening stages, raw and roasted nuts | Bouali et al., 2013; Juhaimi et al., 2017; Kornsteiner et al., 2006; Toro-Vazquez et al., 1999 |
0.07–2.4 mg/Kg oil | Mechanical pressing of oil, direct injection in HPLC | Different cultivars and harvest years, commercial oils from different locations | Castelo-Branco et al., 2016; Fernandes et al., 2017; Gong et al., 2017 | |
ND–6.2 mg/Kg oil | RT oil extraction followed by saponification or liquid/liquid extraction | Different locations, years, and extraction conditions | Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008b; Miraliakbari & Shahidi, 2008c | |
0.02–0.6 mg/100 g nut | RT or Soxhlet oil extraction, direct injection in HPLC | Different cultivars and years | Chun et al., 2002; Robbins et al., 2015; Robbins et al., 2011; USDA, 2016 | |
ND–0.8 mg/100g nut | Cold saponification of ground nuts | Different cultivars | Pérez-Fernández et al., 2017 | |
Tocotrienols | ||||
β | ND–0.009 mg/100g nut | Cold saponification of ground nuts | Different cultivars | Pérez-Fernández et al., 2017 |
γ | <0.001–0.025 mg/100g nut | Cold saponification of ground nuts | Different cultivars | Pérez-Fernández et al., 2017 |
Phytosterols | ||||
Δ5-Avenasterol | 10.0–214.4 mg/100g oil | Solvent extraction (RT or soxhlet) | Different locations, extraction conditions and ripening stages | Bouali et al., 2014; Derewiaka et al., 2014; Miraliakbari & Shahidi, 2008b |
10.6–23.4 mg/100g oil | Mechanical pressing | Commercial oils from raw and roasted pecan | Gong et al., 2017 | |
15–16% total DsS | Mechanical pressing | Commercial nuts and oils | Fernandes et al., 2017 | |
12.6–14.6 mg/100g nut | Solvent extraction | Commercial nuts | Phillips et al., 2005; Robbins et al., 2011; USDA, 2016 | |
Campesterol | 1.5–193.5 mg/100g oil | Solvent extraction (RT or soxhlet) | Different locations, years extraction conditions and ripening stages | Bouali et al., 2014; Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008b |
5.7–67.1 mg/100g oil | Mechanical pressing | Commercial oils from raw and roasted pecan | Gong et al., 2017 | |
4.2–4.5% total DsS | Mechanical pressing | Commercial nuts and oils | Fernandes et al., 2017 | |
5.9–6.0 mg/100g nut | Solvent extraction | Commercial nuts | Phillips et al., 2005; Robbins et al., 2011; USDA, 2016 | |
β-Sitosterol | 32.6–2,134 mg/100g oil | Solvent extraction (RT or soxhlet) | Different locations, years extraction conditions and ripening stages | Bouali et al., 2014; Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008b |
91.4–234.3 mg/100g oil | Mechanical pressing | Commercial oils from raw and roasted pecan | Gong et al., 2017 | |
75–76% total DsS | Mechanical pressing | Commercial nuts and oils | Fernandes et al., 2017 | |
116.5–130.1 mg/100g nut | Solvent extraction | Commercial nuts | Phillips et al., 2005; Robbins et al., 2011; USDA, 2016 | |
Stigmasterol | 0.3–100 mg/100g oil | Solvent extraction (RT or soxhlet) | Different locations, years extraction conditions and ripening stages | Bouali et al., 2014; Derewiaka et al., 2014; Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008b |
3.4–22.9 mg/100g oil | Mechanical pressing | Commercial oils from raw and roasted pecan | Gong et al., 2017 | |
0.9% total DsS | Mechanical pressing | Commercial nuts and oils | Fernandes et al., 2017 | |
2.4–2.6 mg/100g nut | Solvent extraction | Commercial nuts | Phillips et al., 2005; Robbins et al., 2011; USDA, 2016 | |
Phospholipids (PL) | ||||
Total PL | 1.19 % total oil | Folch oil extraction | Commercial sample | Song et al., 2018 |
PS | 0.15–0.47 % total oil | RT oil extraction | Different extraction conditions | Miraliakbari & Shahidi, 2008a; Miraliakbari & Shahidi, 2008b |
ND | Folch oil extraction | Commercial sample | Song et al., 2018 | |
PI | 0.04–0.18 % total oil | RT oil extraction | Different extraction conditions | Miraliakbari & Shahidi, 2008a; Miraliakbari & Shahidi, 2008b |
24.5 % total PL | Folch oil extraction | Commercial sample | Song et al., 2018 | |
PC | 0.10–0.52 % total oil | RT oil extraction | Different extraction conditions | Miraliakbari & Shahidi, 2008a; Miraliakbari & Shahidi, 2008b |
18.1 % total PL | Folch oil extraction | Commercial sample | Song et al., 2018 | |
PA | ND | RT oil extraction | Different extraction conditions | Miraliakbari & Shahidi, 2008a; Miraliakbari & Shahidi, 2008b |
24.6 % total PL | Folch oil extraction | Commercial sample | Song et al., 2018 | |
PE | 17.1 % total PL | Folch oil extraction | Commercial sample | Song et al., 2018 |
PG | 10.3 % total PL | Folch oil extraction | Commercial sample | Song et al., 2018 |
Total sphingolipids | ||||
0.21–0.55 % total oil | RT oil extraction | Different extraction conditions | Miraliakbari & Shahidi, 2008a; Miraliakbari & Shahidi, 2008b | |
ND | Folch oil extraction | Commercial sample | Song et al., 2018 | |
Total polyphenols | ||||
113–783 mgGAE/Kg oil | Solvent extraction, liquid/liquid extraction of polyphenols | Different extraction conditions, locations and years | Domínguez-Avila et al., 2013; Miraliakbari & Shahidi, 2008a | |
54–711 mgTocE/Kg oil | Solvent extraction, liquid/liquid extraction of polyphenols | Different extraction conditions, locations and years | Miraliakbari & Shahidi, 2008a | |
40 mg GAE/Kg oil | Cold pressing, liquid/liquid extraction of polyphenols | Commercial oil | Castelo-Branco et al., 2016 |
Plant part | Content in 100 g of sample | Extraction solvent | Comments on the samples | Reference |
---|---|---|---|---|
Abreviations/GAE, gallic acid equivalents; CAE, chlorogenic acid equivalents; EAE, ellagic acid equivalents; CE, catechin equivalents; QE, quercetin equivalents; PBE, procyanidin B2 equivalents. Notes/ 1reported in 100 g of deffated kernel; 2quantified by HPLC; 3quantified by the DMAC assay. | ||||
Total polyphenols (Folin-Ciocalteu assay) | ||||
Kernel | 2,016 mg GAE | acetone/water/acetic acid (70/29.5/0.5) | Commercial sample | Wu et al., 2004 |
Kernel | 1,022–1,444 mg GAE | 75% acetone with Na2S2O5 | Commercial samples | Kornsteiner et al., 2006 |
Kernel | 6,200–10,600 mg CAE1 | 70% acetone | Different cultivars | Villarreal-Lozoya et al., 2007 |
Kernel | 8,200–10,400 mg CAE1 | 70% acetone | Different cultivars and postharvest treatments | Villarreal-Lozoya et al., 2009 |
Kernel | 1,227.3 mg GAE | 80% acetone | Commercial sample, free phenolics | Yang et al., 2009 |
Kernel | 236.6 mg GAE | Methanol/ethyl acetate after basic hydrolysis | Commercial sample, bound phenolics | Yang et al., 2009 |
Kernel | 1,170–1,250 mg GAE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Kernel | 829–959 mg GAE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Kernel | 1.82–2.62 mg EAE | acetone/water/acetic acid (70/29.5/0.5) | Different cultivars | Robbins et al., 2015 |
Kernel | 1,925–2,313 mg GAE | methanol/chloroform/1% NaCl (1/1/0.5) | Different cultivars | Flores-Cordova et al., 2017 |
Nutshell | 29-63 g CAE | 70% acetone | Different cultivars | Villarreal-Lozoya et al., 2007 |
Nutshell | 11.7–16.7 g GAE | water | Different batches | do Prado et al., 2009 |
Nutshell | 19.1 g GAE | no information | no information | Medina et al., 2010 |
Nutshell | 6.5–9.2 g GAE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Nutshell | 19.2 g GAE | water | no information | Reckziegel et al., 2011 |
Nutshell | 9.4–18.1 g GAE | water | Different years and cultivars | do Prado et al., 2013 |
Nutshell | 19.2 g GAE | water | Commercial sample | Müller et al., 2013 |
Nutshell | 12.8 g GAE | water | Barton variety | Porto et al., 2013 |
Nutshell | 2.4–5.4 g GAE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Nutshell | 0.03–59.1 g GAE | water, ethanol, supercritical CO2 | Different extraction conditions | do Prado et al., 2014 |
Nutshell | 1.4–25 mg GAE | ethanol | Different cultivars | Hawary et al., 2016 |
Nutshell | 42.6 g GAE | water | Barton variety | Hilbig et al., 2016 |
Nutshell | 14.5–17.0 g GAE | methanol/chloroform/1% NaCl (1/1/0.5) | Different cultivars | Flores-Cordova et al., 2017 |
Leave | 3.2–98 mg GAE | ethanol | Different cultivars | Hawary et al., 2016 |
Kernel cake | 690 mg GAE | 80% ethanol | Industrial byproducts | Sarkis et al., 2014 |
Kernel cake | 2.2–7.1 mg GAE | ethanol, acetone, supercritical CO2 | Different extraction conditions | Salvador et al., 2016 |
Total flavonoids (AlCl3 assay) | ||||
Kernel | 639.3 mg CE | 80% acetone | Commercial sample, free phenolics | Yang et al., 2009 |
Kernel | 65.4 mg CE | Methanol/ethyl acetate after basic hydrolysis | Commercial sample, bound phenolics | Yang et al., 2009 |
Kernel | 580–640 mg CE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Kernel | 345–397 mg CE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Nutshell | 2.6–3.6 g CE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Nutshell | 1.6 g CE | water | Barton variety | Porto et al., 2013 |
Nutshell | 1.6–3.2 g CE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Nutshell | 1.2–6.7 mg QE | ethanol | Different cultivars | Hawary et al., 2016 |
Nutshell | 9–30 mg 2 | methanol | Different cultivars | Hawary et al., 2016 |
Leave | 13–21 mg QE | ethanol | Different cultivars | Hawary et al., 2016 |
Leave | 107–173 mg 2 | methanol | Different cultivars | Hawary et al., 2016 |
Kernel cake | 690 mg CE | 80% ethanol | Industrial byproducts | Sarkis et al., 2014 |
Total proanthocyanidins (Vanillin-HCl assay) | ||||
Kernel | 2,300–4,700 mg CE1 | 70% acetone | Different cultivars | Villarreal-Lozoya et al., 2007 |
Kernel | 2,300–5,300 mg CE1 | 70% acetone | Different cultivars and postharvest treatments | Villarreal-Lozoya et al., 2009 |
Kernel | 2,030–2,670 mg CE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Kernel | 2,828–3,950 mg CE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Kernel | 420–655 mg PBE3 | acetone/water/acetic acid (70/29.5/0.5) | Different cultivars | Robbins et al., 2015 |
Kernel | 2,181–2,322 mg CE | methanol/chloroform/1% NaCl (1/1/0.5) | Different cultivars | Flores-Cordova et al., 2017 |
Nutshell | 38.8–87.6 g CE | 70% acetone | Different cultivars | Villarreal-Lozoya et al., 2007 |
Nutshell | 2.6–4.8 g CE | water | Different cultivars | Villarreal-Lozoya et al., 2007 |
Nutshell | 3.5–4.8 g CE | water | Different batches | do Prado et al., 2009 |
Nutshell | 14.46 g CE | no information | no information | Medina et al., 2010 |
Nutshell | 31.6–46.4 g CE | 80% acetone | Different locations | de la Rosa et al., 2011 |
Nutshell | 3.6–4.9 g CE | water | Different years and cultivars | do Prado, 2013 |
Nutshell | 5.8 g CE | water | no information | Reckziegel et al., 2011 |
Nutshell | 5.8 g CE | water | Commercial sample | Müller et al., 2013 |
Nutshell | 4.7 g CE | water | Barton variety | Porto et al., 2013 |
Nutshell | 28.2–70.0 g CE | 80% acetone | Different locations | de la Rosa et al., 2014 |
Nutshell | 0.05–41.2 g CE | water, ethanol, supercritical CO2 | Different extraction conditions | do Prado et al., 2014 |
Nutshell | 43.2–52.8 g CE | methanol/chloroform/1% NaCl (1/1/0.5) | Different cultivars | Flores-Cordova et al., 2017 |
Kernel cake | 16.5–17.5 mg CE | 80% ethanol | Industrial byproducts | Sarkis et al., 2014 |
Kernel cake | 1.5–31.5 mg CE | ethanol, acetone | Different extraction conditions | Salvador et al., 2016 |
Total phenolic acids (HPLC) | ||||
Nutshell | 130–5,150 mg | methanol | Different cultivars | Hawary et al., 2016 |
Leave | 264–604 mg | methanol | Different cultivars | Hawary et al., 2016 |
Phenolic group or family | Identified compound | Content | Extraction solvent | Analytical technique | Reference |
---|---|---|---|---|---|
Abreviations/ HPLC-MS, high performance liquid chromatography-mass spectrometry; HPLC-DAD, high performance liquid chromatography-diode array detector; NP-HPLC, normal phase high performance liquid chromatography. Notes/ 1expressed per gram of deffated kernel; 2expressed per gram of whole kernel; 3expressed per gram of crude extract; 4expressed per 100 grams of whole kernel; 5quantified as ellagic acid + ellagic acid derivatives per gram of extract fraction; 6quantified as catechin + (epi)catechin derivatives per gram of extract fraction; 7solvent ratio 70/29.5/0.5 v/v. | |||||
Phenolic acids | |||||
Hydroxybenzoic acids and derivatives | p-Hidroxybenzoic acid | 10.0–14.8 μg 1 | Acidified methanol | Gas chromatography | Senter et al., 1980 |
29.0–90.1 μg 2 | 80% acetone | Acid hydrolysis, HPLC-MS | de la Rosa et al., 2011 | ||
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
28.64–49.16 μg 3 | acetone/water/acetic acid7 | Acid or basic hydrolysis, HPLC-MS | Robbins et al., 2015 | ||
3.0 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Gentisic acid | 1.2–7.7 μg 1 | Acidified metanol | Gas chromatography | Senter et al., 1980 | |
Protocatechuic acid | 4.0–7.2 μg 1 | Acidified metanol | Gas chromatography | Senter et al., 1980 | |
13.1–30.5 μg 2 | 80% acetone | Acid hydrolysis, HPLC-MS | de la Rosa et al., 2011 | ||
20.99–24.08 μg 3 | acetone/water/acetic acid7 | Basic hydrolysis, HPLC-MS | Robbins et al., 2015 | ||
14.46–32.71 mg4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | ||
Protocatechuic acid hexoside | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
3.3 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Vanillic acid | 3.1–6.0 μg 1 | Acidified metanol | Gas chromatography | Senter et al., 1980 | |
Gallic acid | 63.2–132.8 μg 1 | Acidified metanol | Gas chromatography | Senter et al., 1980 | |
651–∼2,000 μg 1 | 70 % acetone | Basic and acid hydrolysis, HPLC-DAD | Villarreal-Lozoya et al., 2007; Villarreal-Lozoya et al., 2009 | ||
64.3–274.5 μg 2 | 80% acetone | HPLC-MS, with or without hydrolysis | de la Rosa et al., 2011 | ||
1,800 μg 2 | 80% acetone | Acid hydrolysis, HPLC-DAD | de la Rosa et al., 2014 | ||
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
7.6 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
11.8–33.9 mg4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | ||
Syringic acid | ID | Acidified metanol | Gas chromatography | Senter et al., 1980 | |
6.58–10.76 mg4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | ||
Gallic acid derivatives | Monogalloyl hexoside | ID | 80% acetone | HPLC-MS | de la Rosa et al., 2011 |
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
4.6–10.4 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Digalloyl hexoside | 0.3 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | |
Ethyl gallate | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
1.5 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Ellagic acid and derivatives | Ellagic acid | 900–4,732 μg 1 | 70 % acetone | Basic and acid hydrolysis, HPLC-DAD | Villarreal-Lozoya et al., 2007; Villarreal-Lozoya et al., 2009 |
1,400–5,500 μg 2 | 80% acetone | HPLC-MS, with or without hydrolysis | de la Rosa et al., 2011 | ||
3,600 μg 2 | 80% acetone | Acid hydrolysis, HPLC-DAD | de la Rosa et al., 2014 | ||
4.91–41.3 mg 5 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
32.1–132.0 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
86.4 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Ellagic acid pentosides | ID | 80% acetone | HPLC/MS | de la Rosa et al., 2011 | |
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
5.86–9.30 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
8.3 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Ellagic acid hexosides | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
2.9 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Methyl and dimethyl ellagic acid isomers | ID | 80% acetone | Acid hydrolysis, HPLC-MS | de la Rosa et al., 2011 | |
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
3.09–7.35 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
4.8 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Methylated ellagic acid glycosides | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
0.8–17.7 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Galloylated ellagic acid derivatives | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
5.81–8.46 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
2.1 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Galloyl ellagic acid pentosides | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
4.18–6.23 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
8.3–12.0 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
HHDP-hexosides | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
2.4–7.0 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Galloylated-HHDP-hexosides | 0.3–9.6 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | |
Valoneic acid dilactone | ID | 80% acetone | Acid hydrolysis, HPLC-MS | de la Rosa et al., 2011 | |
ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
7.71–262.4 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
48.2 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Hydroxy cinnamic acids and derivatives | p-Coumaric acid | 0.73–1.26 mg 4 | 60% methanol | HPLC-DAD | Juhaimi et al., 2017 |
Caffeic acid | 2.1 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | |
6.27–8.48 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | ||
Caffeic acid hexoside | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
4.19–6.74 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
Ferulic acid | 4.50–11.54 mg 4 | 60% methanol | HPLC-DAD | Juhaimi et al., 2017 | |
Sinapoylquinic acid | 11.71–14.71 μg 3 | acetone/water/acetic acid7 | Basic hydrolysis, HPLC-MS | Robbins et al., 2015 | |
Other non-flavonoids | |||||
1,2-dihydroxy benzene | 13.38–28.77 mg4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | |
Resveratrol | 1.21–3.11 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | |
Flavonoids | |||||
Monomeric flavan-3-ols | Catechin | 7.2 mg 4 | Acidified methanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 |
ID | 70 % acetone | Basic and acid hydrolysis, HPLC-DAD | Villarreal-Lozoya et al., 2007; Villarreal-Lozoya et al., 2009 | ||
ID | 80% acetone | HPLC-MS | de la Rosa et al., 2011 | ||
2.5 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | ||
500 μg 2 | 80% acetone | LH-20 fractionation, HPLC-DAD | de la Rosa et al., 2014 | ||
16.5–35.5 mg 6 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
10.6–82.3 μg 3 | acetone/water/acetic acid7 | HPLC-MS, with or without hydrolysis | Robbins et al., 2015 | ||
9.9 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-DAD | Gong & Pegg, 2017 | ||
18.3–47.6 mg4 | 60% methanol | HPLC-DAD | Juhaimi et al., 2017 | ||
(Epi)catechin hexoside | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-DAD | Robbins et al., 2014 | |
10.7 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-DAD | Gong & Pegg, 2017 | ||
Epicatechin | 0.8 mg 4 | Acidified methanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 | |
ID | 70% acetone | Basic and acid hydrolysis, HPLC-DAD | Villarreal-Lozoya et al., 2007 | ||
600 μg 2 | 80% acetone | LH-20 fractionation, HPLC-DAD | de la Rosa et al., 2014 | ||
2.8 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Epigallocatechin | 5.6 mg 4 | Acidified metanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 | |
ID (as (epi) gallocatechin) | 80% acetone | Acid hydrolysis, HPLC-MS | de la Rosa et al., 2011 | ||
ID (as (epi) gallocatechin) | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
(Epi)catechin-3-gallate | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
2.0–4.2 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Epigallocatechin-3-gallate | 2.3 mg 4 | Acidified methanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 | |
ID (as (epi) gallocatechin-3-gallate) | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | ||
Oligo and polymeric flavan-3-ols | Dimers | 42.1 mg 4 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gu et al., 2004; USDA, 2016 |
B-type procyanidin dimers | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
3.93–6.03 μg 3 | acetone/water/acetic acid7 | HPLC/MS | Robbins et al., 2015 | ||
1.3–31.42 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
Procyanidin B1 (B-type dimer) | 1.76 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Procyanidin B2 (B-type dimer) | 0.18 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Procyanidin B3 (B-type dimer) | 4.87 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
Procyanidin B6 (B-type dimer) | 0.59 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
Procyanidin B7 (B-type dimer) | 0.49 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
A-type procyanidin dimers | ID | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Robbins et al., 2014 | |
4.47–8.49 μg 3 | acetone/water/acetic acid7 | HPLC/MS | Robbins et al., 2015 | ||
0.7–3.0 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, HPLC-MS | Gong & Pegg, 2017 | ||
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Trimers | 26.0 mg 4 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gu et al., 2004; USDA, 2016 | |
B-type procyanidin trimers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
18.34 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gong & Pegg, 2017 | ||
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Procyanidin C2 (B-type trimer) | 5.02 mg 4 | 70% acetone | HPLC/MS/MS | Bittner et al., 2013 | |
B-type prodelphinidin trimers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
B-type procyanidin tetramers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
7.08 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gong & Pegg, 2017 | ||
ID | 80% acetone | LH-20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
B-type prodelphinidin tetramers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
B-type procyanidin pentamers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
5.53 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gong & Pegg, 2017 | ||
B-type prodelphinidin pentamers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
B-type procyanidin hexamers | 1.62 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gong & Pegg, 2017 | |
B-type prodelphinidin hexamers | ID | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Robbins et al., 2014 | |
Tetramers-hexamers | 101.4 mg 4 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gu et al., 2004; USDA, 2016 | |
B-type prodelphinidin heptamers | 0.41 μg 3 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gong & Pegg, 2017 | |
Heptamers-decamers | 84.2 mg 4 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gu et al., 2004; USDA, 2016 | |
Larger polymers | 223.0 mg 4 | acetone/water/acetic acid7 | LH-20 fractionation, NP-HPLC-MS | Gu et al., 2004; USDA, 2016 | |
Anthocyanidins | Cyanidin | 10.74 mg 4 | Acidified methanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 |
Delphinidin | 7.3 mg 4 | Acidified methanol | Acid hydrolysis, HPLC-DAD | Harnly et al., 2006; USDA, 2016 | |
Flavonols | Kaempferol | 2.68–5.21 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 |
Quercetin | 3.67–10.01 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | |
Isorhamnetin | 1.67–4.55 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 | |
Rutin | 6.71–12.67 mg 4 | 60% metanol | HPLC-DAD | Juhaimi et al., 2017 |
Phenolic class | Group | Identified compound | Content (mg/g) | Extraction solvent | Analytical technique | Reference |
---|---|---|---|---|---|---|
Abreviations: ID, identified, not quantified; L-L, liquid-liquid; mDP, mean degree of polymerization, NP-HPLC, normal phase HPLC. Notes: 1values reported as μg/mL. 2mg/g of extract. | ||||||
Compounds in bark | ||||||
Phenolic acids | Hydroxybenzoic acids | Protocatechuic acid | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 |
Flavonoids | Flavonols | Quercetin | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 |
Azaleatin | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 | ||
Caryatin | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 | ||
Caryatin-3′-methyl ether | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 | ||
Caryatin-3′-sulfate | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 | ||
Caryatin-3′-methyl ether-7-O-b-glucoside | ID | 80% Ethanol; L-L extraction | LH-20 fractionation, NMR analysis | Abdalla et al., 2011 | ||
Compounds in leaves | ||||||
Phenolic acids | Hydroxybenzoic acids and derivatives | Ellagic acid | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 |
Ellagic acid | 75.04 | Water | HPLC-DAD | Bottari et al., 2017 | ||
Ellagic acid | 118.51 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
Ellagic acid | 1.8–0.59 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Ellagic acid derivative | 45.61 | Water | HPLC-DAD | Bottari et al., 2017 | ||
Ellagic acid derivative | 69.37 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
3,3′-Dimethoxy ellagic acid | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Gallic acid | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Gallic Acid | 68.15 | Water | HPLC-DAD | Bottari et al., 2017 | ||
Gallic acid | 87.32 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
Gallic acid | 0.34–0.08 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Methyl gallate | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
2,3-Digalloyl-β-D-4C1-glucopyranoside | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
p-Hydroxy benzoic acid | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
p-Hydroxy benzoic acid | 0.04–0.024 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
protocatechuic acid | 0.83–0.27 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Pyrogallic acid | 1.6–0.45 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Salicylic acid | 0.19–0.02 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Syringic acid | 0.048–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Hydroxycinnamic acids | Caffeic acid | 0.13–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Other non-flavonoids | Catechol | 0.45–0.14 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Cinnamic acid | 0.04–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Ferulic acid | 0.13–0.02 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Flavonoids | Flavones | Apigenin | 0.02–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 |
Hesperidin | 0.20–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Hesperetin | 0.21–0.02 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Flavonols | Kaempferol | 0.08–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Kaempferol-3-O-(6′.-O-galloyl)-β-D-galactopyranoside | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Kaempferol-3-O-α-D-galactopyranoside | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Quercetin | 0.08–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Quercitrin | 1.08–0.26 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Quercetin-3-o-(6′.-o-galloyl)-β-D-galactopyranoside | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Rutin | 3.84 | Water | HPLC-DAD | Bottari et al., 2017 | ||
Rutin | 4.03 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
Rutin | 0.60–0.0 | methanol | HPLC-DAD | Hawary et al., 2016 | ||
Trifolin | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Flavanones | Naringenin | 0.17-0.0 | methanol | HPLC-DAD | Hawary et al., 2016 | |
Monomeric flavan-3-ols | Catechin | 43.27 | Water | HPLC-DAD | Bottari et al., 2017 | |
Catechin | 40.19 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
Epigallocatechin | 17.34 | Water | HPLC-DAD | Bottari et al., 2017 | ||
Epigallocatechin | 10.17 | Ethanol | HPLC-DAD | Bottari et al., 2017 | ||
Epigallocatechin-3-O-gallate | ID | Ethanol | LH-20 fractionation, NMR analysis | Gad et al., 2007 | ||
Compounds in kernel cake (byproduct from the oil industry) | ||||||
Phenolic acids | Hydroxybenzoic acids | Ellagic acid | ID | 80% ethanol | Acid and basic hydrolysis, HPLC-DAD | Sarkis et al., 2014 |
Gallic acid | ID | 80% ethanol | Acid and basic hydrolysis, HPLC-DAD | Sarkis et al., 2014 | ||
Flavonoids | Monomeric flavan-3-ols | Catechin | ID | 80% ethanol | Acid and basic hydrolysis, HPLC-DAD | Sarkis et al., 2014 |
Epicatechin | ID | 80% ethanol | Acid and basic hydrolysis, HPLC-DAD | Sarkis et al., 2014 | ||
Compounds in nutshell | ||||||
Phenolic acids | Benzoic acid | 0.18–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Hydroxybenzoic acids | Ellagic acid | 0.8 | 80% acetone | Acid hydrolysis, HPLC-DAD | de la Rosa et al., 2014 | |
Ellagic acid | 37.141 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Ellagic acid | 0.58 | Water | Acid hydrolysis, HPLC-DAD | Porto et al., 2013 | ||
Ellagic acid | ID | 70% ethanol | HPLC UV detector | Ruiz-Martínez et al., 2011 | ||
Ellagic acid | 0.14 | methanol | HPLC-DAD | Flores-Córdova et al., 2017 | ||
Ellagic acid | 1.8 | Water | Acid hydrolysis, HPLC-DAD | Porto et al., 2013 | ||
Gallic Acid | 18 | Water | HPLC UV detector | Benvegnu et al., 2010 | ||
Gallic acid | 2.3 | 80% acetone | Acid hydrolysis, HPLC-DAD | de la Rosa et al., 2014 | ||
Gallic acid | 0.17–0.19 | methanol | HPLC-DAD | Flores-Córdova et al., 2017 | ||
Gallic acid | 2.16–0.0 | methanol | HPLC-DAD | Hawary et al., 2016 | ||
Gallic Acid | 5.741 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Gallic acid | 0.87 | Water | Acid hydrolysis, HPLC-DAD | Porto et al., 2013 | ||
Gallic acid | 124.3 | Water | HPLC UV detector | do Prado et al., 2014 | ||
Gallic acid | 828.7 | ethanol | HPLC UV detector | do Prado et al., 2014 | ||
Gallic acid | 167.09 | Water | HPLC-DAD | Trevisan et al., 2014 | ||
Gallic acid | 2.69 | Water | Acid hydrolysis, HPLC-DAD | Porto et al., 2013 | ||
p-Hydroxy benzoic acid | 0.951 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
p-Hydroxy benzoic acid | 148.9 | Ethanol | HPLC UV detector | do Prado et al., 2014 | ||
Protocatechuic acid | 1.99–0.09 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Pyrogallic acid | 42.88–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Salicylic acid | 0.01–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Vanillic acid | 1.36–0.30 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Vanillic acid | 0.27–.0.1 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Vanillic acid | 2.181 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
hydroxycinnamic acid derivatives | 2-Hydroxycinnamic acid | ID | 70% ethanol | HPLC UV detector | Ruiz-Martínez et al., 2011 | |
Caffeic acid | 1.761 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Chlorogenic acid | 2.01–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Chlorogenic acid | 5.021 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Chlorogenic acid | 233.42 | Water | HPLC UV detector | do Prado et al., 2014 | ||
Chlorogenic acid | 137.92 | Ethanol | HPLC UV detector | do Prado et al., 2014 | ||
Ferulic acid | 0.13–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Other non-flavonoids | Catechol | 2.21–0.54 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Flavonoids | Flavones | Hesperetin | 0.07–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 |
Flavonols | Kaempferol | 0.055–0.007 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Quercetin | 0.05–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Quercitrin | 0.02–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Quercitrin | ID | 70% ethanol | HPLC UV detector | Ruiz-Martínez et al., 2011 | ||
Rutin | 13.84 | Water | HPLC-DAD | Trevisan et al., 2014 | ||
Rutin | 0.14–0.0 | Methanol | HPLC-DAD | Hawary et al., 2016 | ||
Flavanones | Naringenin | 0.08–0 | Methanol | HPLC-DAD | Hawary et al., 2016 | |
Monomeric flavan-3-ols | Catechin | 0.159–0.191 | methanol | HPLC-DAD | Flores-Córdova et al., 2017 | |
Catechin | 1.71 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Catechin | ID | 70% ethanol | HPLC UV detector | Ruiz-Martínez et al., 2011 | ||
Catechin | 50.26 | Water | HPLC-DAD | Trevisan et al., 2014 | ||
Catechin | ID | 80% acetone | LH-20 fractionation, HPLC-MS | Vázquez-Flores et al., 2017 | ||
Catechin | ID | 80% acetone | LH 20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Epicatechin | 5.611 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Epicatechin gallate | 3.341 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Epicatechin gallate | 0.342 | ethanol | HPLC UV detector | do Prado et al., 2014 | ||
Epigallocatechin | 0.3 | 80% acetone | HPLC-DAD | de la Rosa et al., 2014 | ||
Epigallocatechin | 161.621 | Water | HPLC-DAD | Hilbig et al., 2018 | ||
Epigallocatechin | 5184.32 | water | HPLC UV detector | do Prado et al., 2014 | ||
Epigallocatechin | 120.22 | ethanol | HPLC UV detector | do Prado et al., 2014 | ||
Epigallocatechin | ID | 80% acetone, | LH 20 fractionation, HPLC-MS (ion trap) | Vázquez-Flores et al., 2017 | ||
Oligo and polymeric flavan-3-ols | Procyanidins and prodelphinidis with mDP 3.4–12 | ID | 80% acetone, | LH 20 fractionation, HPLC-MS (ion trap) | Vázquez-Flores et al., 2017 | |
Procyanidin B1 (B-type dimer) | ID | 80% acetone | LH 20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
Procyanidin B2 (B-type dimer) | ID | 80% acetone | LH 20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
B- type procyanidin trimers to hexamers | ID | 80% acetone | LH 20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 | ||
B-type prodelphinidin trimer | ID | 80% acetone | LH 20 and Toyopearl fractionation, NP-HPLC-MS | Lerma-Herrera et al., 2017 |
Activity | sample | model | results | comments | reference | |||
---|---|---|---|---|---|---|---|---|
LMW: Low molecular weight extract, HMW: High molecular weight extract, EC50: median effective dose, ↓: decrease compared to control, ↑: increase compared to control, ↔ no change compared to control, TC: total cholesterol, LDL: Low-density lipoprotein cholesterol, HDL: high-density lipoprotein cholesterol, non-HDL: non-high-density lipoprotein cholesterol, VLDL: very Low-density lipoprotein cholesterol, TAG: triacylglyceride, APOB: apolipoprotein B, APOA1: apolipoprotein A1, LDLR: LDL receptor, LXRa: LXRa, MDA: Malondialdehyde, TBARS: thiobarbituric acid-reactive substances, SOD: superoxide dismutase, ORAC: oxygen radical absorbance capacity, FRAP: ferric reducing ability, TEAC: Trolox equivalent antioxidant capacity, SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, BMI: body mass index, HTB4: bladder carcinoma cell line, LLC-PK1:, non-carcinogenic kidney epithelial cell line, Caco-2: heterogeneous human epithelial colorectal adenocarcinoma cells, HepG2: liver hepatocellular carcinoma cells, CGNs: cerebellar granule neurons cells, ALS: amyotropic lateral sclerosis, PAC: proanthocyanidins, GFAP: glial fibrillary acidic protein. | ||||||||
anti-inflammatory | crude extract, HMW and LMW extracts | LPS-stimulated inflammation in murine RAW 264.7 macrophage cell lines | ↓ NO production (LMW); ↓ ROS production (LMW); Slight cytotoxicity (at 25 and 50 μg/mL); ↔ NO and ROS production (crude extract and HMW) | dose dependent. Effect may be due to the presence of PAC | Robbins et al., 2016 | |||
antiproliferative | 80% acetone extract | HepG2 and Caco-2 cells | EC50: 9.7 mg/mL (HepG2); EC50 = 2.5 mg/mL (Caco-2) | dose dependent, weak correlation with total phenols and flavonoids content | Yang et al., 2009 | |||
antiproliferative | kernel HMW fraction | HTB4 bladder and LLC-PK1 cells | EC50: 0.26 mg/mL (HTB4 bladder); EC50: 0.55 mg/mL (LLC-PK1) | de la Rosa et al., 2014 | ||||
cancer prevention | whole pecan | aberrant crypt foci (AFC) induced in male rats | ↓proximal and distal colon ACF; ↓crypt multiplicity; ↑ GST; ↑CAT; ↑SOD | 5 and 10% substitution diets, 17 weeks | Miller et al., 2010 | |||
cell protective | 0.05% pecan diet | Transgenic mice expressing G93A mutant human SOD-1 | ↓ oxidative stress; Delay in ↓ motor neuron function; ↑ survival motor neurons; ↓ oligomerization of SOD-1; ↓ GFAP levels in lumbar spinal cord | model used to study ALS | Suchy et al., 2010 | |||
cell protective | pecan oil | ovariectomized Wistar female rat | ↔ serum estradiol; ↓ MDA; ↓ TBARS; ↑ SOD (similar to control); ↓ apoptosis of hippocampal cells; ↓ Caspase-3 activity | dose dependent | Zhao et al., 2011 | |||
cell protective | Acetone extract | CGNs cells | EC50: 4.3 mg/mL; ↓ H2O2 cytotoxicity | Extract concentration 10 times lower than EC50. Dose dependent | de la Rosa et al., 2014 | |||
digestive enzymes inhibition | proanthocyanidins | in vitro digestive system | ↓ lipase (29.9%); ↓ amylase (45.9%); ↓ trypsin (40.2%) | inhibition activity depended on enzyme type | Váquez-Flores et al., 2017 | |||
modulate lipid metabolism | whole pecan (WP); pecan oil (PO); Pecan phenolics (PP) | high fat diets supplemented with WP, PO or PP Wistar rats for 63 days | ↓ Adiponectin (all treatments); ↓ TC, LDL, non-HDL (PP, WP); ↑ APOB, LDLR (WP); ↑LXRa (PP); ↓ MDA (TBARS) (WP); ↓ SOD (WP, PP) | rats consumed less high fat diet compared to control. Final weight was similar for all treatments | Domíguez-Avila et al., 2015 | |||
antioxidant, bioavailability of compounds | Whole pecan breakfast | Acute evaluation (24 h) in 16 healthy volunteers. Isocaloric breakfast (90 g) | ↑ORAC values (hydrophilic and lipophilic, 2 h); ↑ serum γ-tocopherol (8 h); ↔ FRAP; ↔ TC; ↓ oxidized LDL (up to 8 h); ↓oxidized LDL:TC ratio (up to 8 h); ↓MDA: TAG ratio (up to 8 h); ↑ serum epigallocatechin-3-gallate (2 h); ↑ urine 3-methoxy-4-hydroxyphenylacetic acid (flavonoid metabolite, up to 24 h) | pecan diet contained 1815 GAE vs 13 in the control diet. Three groups (control, whole pecan and blended pecan) | Hudthagosol et al., 2010 | |||
modulate plasma lipid content | whole pecan | 19 normolipidemic volunteers. Consumption of 68 g/day of pecan for 8 weeks | ↑ total fat and PUFA intake; ↓ TC; ↓ LDL (10% week 4, 6% week 8); ↓ HDL; ↑ Mg intake; ↔ BMI; ↔ body weight | Self-selected diet, with or without pecan. Pecan contributed with 459 Kcal and 44 g fat daily | Morgan and Clayshulte, 2000 | |||
modulate plasma lipid content | whole pecan | 17 hyperlipidemic volunteers. Consumption of 68 g/day of pecan during 8 weeks | ↑ total fat, MUFA and PUFA intake; ↔ TC; ↔ LDL; ↔ HDL; ↔ TAG; ↔ BMI; ↔ body weight | All plasma lipid parameters decreased by week 4, but returned to control levels by week 8 | Eastman and Clayshulte, 2005 | |||
modulate plasma lipid content | whole pecan | 24 healthy volunteers. Two diets each for 4 weeks: control diet and pecan-enriched (78 g, 20% total energy from pecan) | ↓ plasma α-tocopherol normalized to total cholesterol; ↑ plasma γ-tocopherol normalized to total cholesterol; ↓ plasma TBARS; ↔ FRAP, TEAC | randomized, single-blind, crossover, controlled-feeding trial | Haddad et al., 2006 | |||
modulate plasma lipid content | whole pecan in a modified Step 1 diet | 23 healthy volunteers. Pecan diet (72 g/day, 20% energy replacement by pecan) vs Step I diet 4 weeks | ↓ TC (6.7%); ↓ LDL (10.4%); ↓ TAG (11.1%); ↑ HDL (5.6%) similar to baseline; ↓ LDL: HDL (15.7%); ↑ APOA1 (5.6%) similar to baseline; ↓ APOB (11.6%); ↓ lipoprotein (15.1%); ↔ body weight | Both diets improved lipid profile compared to western diet | (ajaram et al., 2001 |
Activity | By-product | Extraction | Model | Results | Comments | Reference |
---|---|---|---|---|---|---|
EC50: median effective dose, IC50: inhibitory concentration for 50% of the samples, ↓: decrease compared to control, ↑: increase compared to control, ↔ no change compared to control, TC: total cholesterol, TAG: triacylglyceride, HbA1c: Glycated hemoglobin, AR: aldose reductase, MDA: Malondialdehyde, TBARS: thiobarbituric acid-reactive substances, GSH: reduced glutathione, TAC: total antioxidant capacity, AST: aspartate aminotransferase, ALT: alanine aminotransferase, GGT: GGT, gamma gluthamyl transpeptidase, CAT: catalase, SOD: superoxide dismutase, MIC: minimum inhibitory concentration, TAG: triacylglyceride, OD: orofacial dyskinesia, CP: Cyclophosphamide, STZ: streptozotocin, MCF-7: Michigan Cancer Foundation-7 cells. | ||||||
anticancer | shell | water extract | MCF-7 cells | EC50: 74.11 mg/L (MCF-7); EC50: 349.6 mg/L (3T3); ↑ antiproliferative effect; ↑ apoptotic (6.2 times); ↓cell viability (52%); ↔ necrotic cells; ↓cell in G1 and G2/M phase; ↑ plasmid DNA damage | dose-dependent | Hilbig et al., 2018 |
anticancer | shell | water extract | Ehrlich ascites tumor in Balb-C mice | ↓tumor growth (52%); ↑ mice survival (67%); ↓ Ehrlich ascites cells viability; ↑ apoptotic (55%); ↑ pro-apoptotic proteins; ↓ anti-apoptotic proteins; ↑ Ehrlich ascites cell’s DNA damage | dose-dependent | Hilbig et al., 2018 |
antidiabetic | Bark | 6 pure compounds extracted from bark | lenses of STZ diabetic rats | ↓ HbA1c; ↑ AR activity; ↑ plasma insulin level; ↑ GSH; ↓ MDA (TBARS) | SAR OH CH3 | Abdallah et al., 2011 |
antidiabetic | shell | water extract | STZ-induced diabetic Wistar rats. 100 mg/kg b.w. 28 days | ↓blood glucose; ↓blood urea; ↔ serum creatinine; no genotoxic activity in blood (Comet assay); no mutagenic effect on bone marrow (micronucleus formation) | no DNA damage or increased micronucleus frequency | Porto et al., 2015a |
antidiabetic | Shell and leave | methanol extract | STZ-induced diabetic Sprague-Dawley rats. 125 mg/kg b.w. 4 weeks | LD50 > 5 gr/kg; ↓serum glucose; ↓serum HbAtc (higher than control, leaves > shell); ↔ serum insulin; ↑GSH level in diabetic rats (Leaves > Shell); ↑TAC level in diabetic rats (Leaves > Shell); ↓serum oxidative stress markers (Leaves > Shell); ↓ serum MDA (TBARS) (Leaves > Shell) | Hawary et al., 2016 | |
anti-inflammatory | shell | water extract | acetic acid and carrageenan induced inflammation in male Swiss mice. Up to 1000 mg/kg b.w. | ↓acetic acid abdominal constriction (ID50 = 477 mg/Kg); ↓carrageenan-mediated hyperalgesia; ↓H2O2 content in carrageenan-treated mice; ↔ serum AST, ALT, Urea, Creatinine | no toxic effect at the water extract concentration used. Intra-gastric | Trevisan et al., 2014 |
antimicrobial | Bark | hexane extract | Mycobacterium tuberculosis | MIC Bark extract: 31 μg/mL | no effect of water, methanol or ethanol extracts. No effect of leave extracts | Cruz-Vega et al., 2008 |
antimicrobial | shell | methanol extract (70%) | 8 plant pathogenic fungi and 10 Fusarium oxysporum isolates | 100% inhibition of 5 fungi and 50-75% inhibition for the other 3 fungi; 100% inhibition of 50% of Fusarium strains and 50–75% inhibition of the rest | 0.20 mg/L extract | Osorio et al., 2010 |
antimicrobial | shell | liquid smoke of roasted or non-roasted pecan shells | Salmonella, Staphylococcus, Escherichia | MIC 6%; No inhibition with water or hexane extracts; MIC acetic acid < MIC methanol; ↓ MIC roasted PSE | Van Loo et al., 2012 | |
antimicrobial | shell | liquid smoke of roasted or non-roasted pecan shells | L. monocytogenes | ↓ MIC roasted PSE (0.38%) | higher antimicrobial activity in roasted liquid smoke | Babu et al., 2013 |
antimicrobial | shell | liquid smoke of roasted or non-roasted pecan shells | Chicken tissue | ↓ chicken skin microflora | treatment before inoculation | Babu et al., 2013 |
antimicrobial | shell | water extract (infusion) | L. monocytogenes, S. aureus, V. parahaemolyticus, B. cereus | MIC 0.11–2.5 mg/mL | Less effective against L. monocytogenes | do Prado et al., 2014 |
antimicrobial | shell | ethanol extract | L. monocytogenes, S. aureus, V. parahaemolyticus, B. cereus | MIC 0.15–1.87 mg/mL | Less effective against L. monocytogenes | do Prado et al., 2014 |
antimicrobial | shell | water extract | 6 Gram+ and 4 Gram- | Effective against both Gram+ and Gram- bacteria | no effect against fungi, E. coli | Caxambú et al., 2016 |
antimicrobial | shell | native lettuce microorganisms | ↓ mesophilic bacteria (3.2 log reduction); ↓ psychrotropic bacteria (2.1 log reduction); ↔ yeast | Additive or synergic effect | Caxambú et al., 2016 | |
antimicrobial | Leave | water and ethanolic extracts | 20 Gram +, Gram - and yeast microorganisms | Both extracts showed inhibition with MIC values between 25 and 0.78 mg/mL | Bottari et al., 2017 | |
cell protective | Shell | Acetone extract | CGNs cells | EC50: 1.8 mg/mL; no protective effect against H2O2 oxidative stress | dose-dependent | de la Rosa et al., 2014 |
modulate plasma lipid content | shell | tyloxapol-induced hypercholesterolemic Wistar rats. 100 mg/kg b.w. 28 days | ↓TC; ↓TAG | no DNA damage or increased micronucleus frequency | Porto et al., 2015a | |
digestive enzymes inhibition | shell | acetone extract, LH 20 column | effect of proanthocyanidins in in vitro digestive system | ↓ lipase (46–17.5%); ↓ amylase (28.3–44.2%); ↓ trypsin (3.9–25.1%) | activity depended on ADP and prodelphinidins content | Vázquez-Flores et al., 2017 |
hepatoprotective | leave | ethanol extract | intraperitoneal CCl4 hepatic damage in Sprague Dawley rats. 100 mg/Kg extract | LD50: 8.3 g/kg; ↑GSH level in diabetic rats; ↓ CCl4-induced AST, ALT and ALP levels in serum | high antioxidant and hepatoprotective effect of extract | Gad et al., 2007 |
hepatoprotective | shell | water extract | ethanol-induced liver damage in male Wistar rats | ↓Fe2+ oxidation in hepatic tissue (IC50 = 66.1 μg/mL, TBARS); ↓ethanol-induced body weight loss; ↓ethanol-induced micronucleus formation; ↓ethanol-induced AST, ALT and GGT levels; ↓ethanol-induced hepatic lipid oxidation (TBARS); ↓ethanol-induced GSH degradation; ↑ CAT activity; ↓ethanol-induced SOD decrease activity | 25 g/L pecan shell extract + 20% Ethanol 10 weeks; lower micronucleus than control | Müller et al., 2013 |
neuroprotective | shell | water extract | reserpine- and haloperidol-induced orofacial dyskinesia (OD) in Wistar rats. 0.6 g/Kg/day for 4 weeks | ↓OD (preventive effect); ↓catalepsy (preventive effect); ↓OD (reverse effect); ↔ catalepsy (reverse effect) | Preventive effect: shell extract given prior drug treatment; reverse effect: shell extract given after drug treatment | Trevizol et al., 2011 |
protective against oxidative stress | shell | water extract | Cyclophosphamide-induced toxicity in rats (heart, kidney, liver, bladder, plasma, erythrocytes) | ↓ MDA (TBARS): (kidney, liver, bladder, plasma, erythrocytes); ↑ GSH: (heart, kidney, liver, bladder, erythrocytes); ↑ Vit C: (plasma); ↑ CAT: (hearth); ↓ CP-induced injury: (bladder) | 5% water extract ab libitum for 30 days prior drug treatment | Benvegnú et al., 2010 |
protective against oxidative stress | shell | water extract | oxidative damage by cigarette smoke exposure in Swiss mice. 25 g/L in water, ab libitum | ↓smoke-induced stress behavior (motion and fecal behavior); ↓lipid peroxidation (TBARS) in brain (like control); ↓lipid peroxidation (TBARS) in red blood cells (similar to control); ↓ascorbic acid depletion in red blood cells (similar to control); ↑ CAT activity in brain; ↑ CAT activity in red blood cells (similar to smoke-treated mice); ↓body weight (compared to control); less body weight loss (compared to smoke) | no toxic effect at the water extract concentration used | Reckziegel et al., 2011 |
toxicity studies | shell | water extract | Wistar rats, acute single doses up to 2000 mg/kg. | LD50 > 2000 mg/kg; slight toxicity signs (dyspnea, lethargy and grunting) | Porto et al., 2013 | |
toxicity studies | shell | water extract | Subacute test up to 100 mg/kg for 28 days | ↓body weight; ↑ platelets; ↓TAG; ↓micronucleus; no mutagenic effect on S. typhimurium strains | dose-dependent | Porto et al., 2013 |
toxicity studies | shell | water extract | CF-1 male mice, acute doses up to 2000 mg/kg. | EC50: 1166 mg/kg, no signs of toxicity (behavioral pattern) at lower doses | Porto et al., 2015b | |
toxicity studies | shell | water extract | Subacute test 200 mg/kg for 3 days | Highest doses (200 mg/kg) slight changes in habituation to stress situations; no genotoxic activity (Comet assay); no mutagenic effect on bone marrow (micronucleus formation); ↔ TC, TAG, glucose | Porto et al., 2015b | |
toxicity studies | shell fiber | shell powder | Rats (Sprague-Dawley), mice (NMRI) feed with up to 150,000 mg/kg/day for 13 weeks | ↔ food efficiency; ↔ hematology parameters; ↔ urinary parameters; ↔ microscopic parameters; ↔ bacterial reverse mutagenic assay; ↔ mammalian micronucleus assay; ↓ TAG in female animals | no toxic effect at the concentrations used | Dolan et al., 2016 |