Journal of Food Bioactives, ISSN 2637-8752 print, 2637-8779 online |
Journal website www.isnff-jfb.com |
Review
Volume 3, Number , September 2018, pages 8-75
Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion
Figures
Major phytochemicals of Ajowan.
Major phytochemicals of aniseed.
Major phenolics of basil.
Major phytochemicals of bay leaf and fruit.
Major phytochemicals of black pepper.
Chemical structure of capsaicin.
Major phytochemicals of cardamom.
Major phytochemicals of cinnamon.
Major phytochemicals of clove.
Major phytochemicals of coriander.
Major phytochemicals of cumin.
Major phytochemicals of curry leaf.
Major phytochemicals of dill.
Major phytochemicals of fennel.
Major flavonoids of fenugreek.
Major phytochemicals of garlic.
Major phytochemicals of ginger.
Major phytochemicals of marjoram.
Major phytochemicals of nutmeg.
Major flavonoids of onion.
Major phenolic compounds of rosemary.
Major phytochemicals of saffron.
Major phytochemicals of tamarind.
Major phytochemicals of thyme.
Major chemical constituents of turmeric.
Tables
Parts used | Phytochemicals | Unit | Content | References |
---|---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; LE, linalool equivalents; and AE, atropine equivalents. | ||||
Seed | Phenolics | mg GAE/g | 26.4 ± 0.37 | Siddhartha et al. 2017 |
Flavoinoids | mg RE/g | 5.3 ± 0.17 | ||
Terpenoids | mg LE/g | 84.2 ± 11.0 | ||
Alkaloids | mg AE/g | 0.84 ± 0.06 | ||
Thymol | % | 87.75 | ||
Essential oil | Carvacrol | 11.17 | Malhotra and Vijay 2004; Mirzahosseini et al. 2017 | |
α-Thujene | 0.27 | |||
α-Pinene | 0.28 | |||
β-Pinene | 2.38 | |||
Myrcene | 0.81 | |||
p-Cymene | 60.78 | |||
Limonene | 8.36 | |||
γ-Terpinene | 22.26 | |||
Linalool | 0.27 | |||
Camphor | 0.28 | |||
trans-β-Terpineol | 1.35 | |||
Borneol | 0.49 |
Types of compound | Unit | Content | References |
---|---|---|---|
Anethole | % | 90.0–94.0 | Rebey et al. 2017; Rodrigues et al. 2003 |
p-Anisaldehyde | 0.10–0.92 | ||
γ-Himachalene | 1.08–3.11 | ||
Estragole | 0.20–3.75 | Rebey et al. 2017 | |
Gallic acid | 0.01–1.22 | ||
Chlorogenic acid | 24.18–29.37 | ||
Caffeic acid | 1.22–2.68 | ||
p-Coumaric acid | 0.69–5.20 | ||
Rosmarinic acid | 10.32–20.59 | ||
Ellargic acid | 0.19–1.83 | ||
Epicatechin-3-gallate | 0.91–8.60 | ||
Coumarin | 6.28–7.32 | ||
Rutin | 1.17–11.02 | ||
Quercetin | 5.00–13.30 | ||
Naringin | 32.14.33.33 | ||
Apigenin | 5.59–6.4 | ||
Larcitrin | 25.26–26.87 | ||
Cirsimartin | 13.97–17.62 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviation is: GAE, gallic acid equivalents. | |||
Total phenolic | mg GAE/g | 21.15–147. | Embuscado 2015; Hossain et al. 2011a; Hinneburg et al. 2006 |
Rosmarinic acid | mg/g | 4.19 ± 0.03 | Hossain et al. 2011a |
Caffeic acid | 0.07 ± 0.00 | ||
Gallic acid | 0.36 ± 0.02 | ||
Carnosol | 1.38 ± 0.0 | ||
Apigenin-7-O-glucoside | 0.18 ± 0.01 | ||
Luteolin-7-O-glucoside | 1.27 ± 0.01 | ||
Estragole | % | 38.22 | Gebrehiwot et al. 2015 |
trans-Methyl cinnamate | 6.51 | ||
α-Caryophyllene | 4.56 | ||
Eucalyptol | 3.46 | ||
Eugenol | 1.53 |
Types of compound | Unit | Content | References | |
---|---|---|---|---|
Leaf | Fruit | |||
Phenolic part | M. Lu et al. 2011; Vallverdú-Queralt et al. 2014 | |||
Caffeic acid | μg/g | 0.44 ± 0.01 | ||
Chlorogenic acid | 0.13 ± 0.01 | |||
Ferulic acid | 2.12 ± 0.16 | |||
p-Coumaric acid | 9.64 ± 0.46 | |||
Protocatechuic acid | 2.05 ± 0.10 | |||
Rosmarinic acid | 0.39 ± 0.01 | Vallverdú-Queralt et al. 2014 | ||
Syringic acid | 0.40 ± 0.02 | |||
p-Hydroxybenzoic acid | 1.14 ± 0.03 | |||
Flavonoid part | M. Lu et al. 2011; Vallverdú-Queralt et al. 2014 | |||
Rutin | 929.4 ± 19.3 | |||
Volatile compounds | ||||
1,8-Cineole | % | 13.83–66.01 | 9.5–32.47 | Bendjersi et al. 2016; Boulila et al. 2015; Chahal et al. 2017a; Kivrak et al. 2017; Kilic et al. 2004 |
α-Pinene | 1.39–6.27 | 3.30–16.55 | ||
Camphene | 0.16–5.23 | 0.80–2.08 | ||
Sabinene | 0.34–8.70 | 1.7–6.03 | ||
β-Pinene | 0.72–6.22 | 2.10–12.83 | ||
Linalool | 0.37–47.21 | 0.29–1.36 | ||
α-Terpineol | 0.5–6.83 | 0.4–1.41 | ||
Myrcene | 0.25–1.68 | 0.5–1.14 | ||
trans-β-Ocimene | 0.05 | 22.1 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and QE, quercetin equivalents. | |||
Phenolic part | |||
Phenolics | mg GAE/g | 3.83–27.20 | Andradea and Salvador Ferreira 2013; Embuscado 2015; Shanmugapriya et al. 2012; Siddhartha et al. 2017; |
Flavonoids | mg QE/g | 2.98 ± 0.07 | Shanmugapriya et al. 2012 |
Gallic acid | µg/mL | 32.42 | Al-Shahwany 2014 |
trans-p-Feruloyl-α-D-glucopyranoside | 3.68 | ||
trans-p-Sinapyl-α-D-glucopyranoside | 147.4 | ||
Quercetin 3-O-R-L-rhamnopyranoside-7-O-α-D-glucopyranosyl | 62.60 | ||
Quercetin 3-O-R-L-rhamnopyranoside | 4.49 | ||
Luteolin 7-O-[2-(α-D-apiofuranosyl)-4-(α-D-glucopyranosyl) | 10.84 | ||
Kaempferol | 11.46 | ||
Coumarins | 12.92 | ||
Volatile compounds | |||
α-Thujene | % | 0.73–1.59 | Bagheri et al. 2014; Butt et al. 2013; Gopalakrishnan et al. 1993; Mohammed and Omran 2016 |
α-Pinene | 4.25–7.96 | ||
Sabinene | 1.94–27.30 | ||
β-Pinene | 2.0–11.08 | ||
α-Phellandrene | 0.68–2.32 | ||
Myrcene | 1.15–18.60 | ||
Limonene | 8.30–23.80 | ||
δ-3-Carene | 0.18–9.34 | ||
Copaene | 0.44–3.84 | ||
β-Caryophyllene | 7.60–52.90 | ||
β-Bisabolene | 0.49–4.25 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: CAE, chlorogenic acid equivalents; QE, quercetin equivalents; and RE, rutin equivalents. | |||
Phenolics | mg GAE/g | 4.79–50.41 | Domínguez-Martínez et al. 2014; Pavlovic et al. 2012; Shaimaa et al. 2016 |
mg CAE/g | 5.23–7.71 | Padilha et al. 2015 | |
Flavonoids | mg QE/g | 3.71–5.12 | Shaimaa et al. 2016 |
mg RE/g | 17.43–25.14 | Pavlovic et al. 2012 | |
Gallic acid | mg/100 g | 2.12–2.18 | Shaimaa et al. 2016 |
3-Hydroxytyrosol | 15.62–25.54 | ||
Benzoic acid | 16.22–38.20 | ||
4-Aminobenzoic acid | 6.94–9.86 | ||
Protocatchuic acid | 4.42–7.03 | ||
Chlorogenic acid | 20.62–25.68 | ||
Catechol | 9.21–4.09 | ||
Epicatechin | 7.29–15.21 | ||
p-Hydroxybenzoic acid | 6.97–11.48 | ||
Caffeic acid | 1.11–10.30 | ||
Vanillic acid | 3.26–3.94 | ||
Catechin | 4.18–1.19 | ||
Rutin | 3.75–3.76 | ||
Hesperidin | 6.67–11.37 | ||
Quercetrin | 7.40–14.35 | ||
Anthocyanins | 0.15–4.92 | Padilha et al. 2015 | |
Carotenoids | 1.54–147.72 | ||
Capsaicin | 752–1247 | Domínguez-Martínez et al. 2014 | |
Ascorbic acid | 271–474 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; LE, linalool equivalents; and AE, atropine equivalents. | |||
Phenolic part | |||
Phenolics | mg GAE/g | 0.96–7.50 | De Soysa et al. 2016; Embuscado 2015; Ghosh et al. 2015; Hinneburg et al. 2006; Siddhartha et al. 2017 |
Protocatechuic acid | mg/kg | 0.10–0.15 | Variyar and Bandyopadhyay 1995 |
Gentisic acid | 0.50 | ||
Caffeic acid | 1.85 | ||
p-Coumaric acid | 0.15–0.20 | ||
Flavonoids | mg RE/g | 1.45 ± 0.12 | Siddhartha et al. 2017 |
Terpenoids | mg LE/g | 71.16 ± 3.5 | |
Alkaloids | mg AE/g | 0.89 ± 0.06 | |
Volatile compounds | |||
α-Pinene | % | 1.5 | Lawrence 1979 |
β-Pinene | 0.2 | ||
Sabinene | 2.8 | ||
Myrcene | 1.6 | ||
Linalool | 3.0 | ||
Linalyl acetate | 2.5 | ||
Limonene | 11.6 | ||
trans-nerolidol | 2.7 | ||
α-Terpineol | 2.60–5.36 | Ghosh et al. 2015; Lawrence 1979 | |
α-Terpinyl acetate | 26.53–31.3 | ||
1,8-Cineole | 22.65–36.3 | ||
Terpinen-4-ol | 0.90–6.32 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; QE, quercetin equivalents; LE, linalool equivalents; and AE, atropine equivalents. | |||
Phenolics | mg GAE/g | 0.42–168.20 | Abdelfadel et al. 2016; De Soysa et al. 2016; Embuscado 2015; Ereifej et al. 2016; Gallo et al. 2010; M. Lu et al. 2011; Opara and Chohan 2014; Sahu et al. 2017; Siddhartha et al. 2017; Vallverdú-Queralt et al. 2014; Vidanagamage et al. 2016; Ying et al. 2015 |
Caffeic acid | µg/g | 0.45–648.30 | Abdelfadel et al. 2016; Vallverdú-Queralt et al. 2014 |
Chlorogenic acid | 0.12–166 | ||
Rosmarinic acid | 0.73–100.10 | ||
Cinnamic acid | 620–883.70 | Abdelfadel et al. 2016 | |
Pyrogall | 100–397 | ||
3-Othyros | 143–256 | ||
Catechol | 117–178 | ||
trans-Vanillic acid | 71.2–5407 | ||
Protocatechuic acid | 10.16 ± 0.53 | Vallverdú-Queralt et al. 2014 | |
p-Coumaric acid | 2.24 ± 0.09 | ||
p-Hydroxybenzoic acid | 1.19 ± 0.04 | ||
Flavonoids | mg RE/g | 4.14 ± 0.39 | Siddhartha et al. 2017 |
mg QE/g | 3.07–20.91 | Abeysekera et al. 2013; Tacouri et al. 2013 | |
Rutin | µg/g | 93.8–570.10 | Abdelfadel et al. 2016 |
Ctechin | 16.14–199.0 | Abdelfadel et al. 2016; Vallverdú-Queralt et al. 2014 | |
Epicatechin | 7.25 ± 0.64 | ||
Alkaloids Volatile part | mg AE/g | 0.99 ± 0.05 | Siddhartha et al. 2017 |
Camphene | % | 0.20–2.70 | Choi et al. 2016; Jayaprakasha et al. 2002; Vangalapati 2012; Parthasarathy 2008 |
α-Phellandrene | 0.20–2.10 | ||
α-Terpinene | 0.10–1.80 | ||
Limonene | 0.80–2.0 | ||
β-Phellandrene | 0.20–6.30 | ||
p-Cymene | 0.20–4.10 | ||
Linalool | 0.89–4.10 | ||
β-Caryophyllene | 0.10–3.20 | ||
α-Terpineol | 0.60–1.10 | ||
Cinnamaldehyde | 56.3–80.0 | ||
Cinnamyl acetate | 2.4–7.10 | ||
Eugenol | 2.0–10.0 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; QE, quercetin equivalents; and LE, linalool equivalents. | |||
Phenolics | mg GAE/g | 7.81–310.4 | Abdelfadel et al. 2016; De Soysa et al. 2016; Embuscado 2015; Ereifej et al. 2016; Kumaravel and Alagusundaram 2014; Mohan et al. 2016; Sahu et al. 2017; Siddhartha et al. 2017; Witkowska et al. 2013; Wojdyło et al. 2007; Zhang et al. 2016 |
Gallic acid | mg/kg | 6470.0–9764.0 | Abdelfadel et al. 2016 |
Caffeic acid | 874.0–1918.2 | ||
trans-Vanillic acid | 4930.0–10839.0 | ||
Pyrogall | 2727.0–9831.0 | ||
Flavonoids | mg QE/g | 12.07–14.68 | Mohan et al. 2016; Zhang et al. 2016 |
mg RE/g | 12.8 ± 0.38 | Siddhartha et al. 2017 | |
Naringin | mg/kg | 271.4–493.0 | Abdelfadel et al. 2016 |
Rutin | 3215.1–5597.8 | ||
Apegenin | 240.5–279.0 | ||
Terpenoids | mg LE/g | 319.2 ± 6.60 | Siddhartha et al. 2017 |
Volatile part (leaf) | |||
Eugenol | % | 76.8–94.41 | Gopalakrishnan et al. 1988; Jirovetz et al. 2006; Raina et al. 2001; Radha Krishnan et al. 2014 |
β-Caryophyllene | 2.91–17.40 | ||
α-Humulene | 0.36–3.58 | ||
Eugenyl acetate | 1.20–22.59 |
Types of compound | Unit | Content | References | |
---|---|---|---|---|
Seed (fruit) | Leaf | |||
Abbreviations are: GAE, gallic acid equivalents; LE, linalool equivalents; and AE, atropine equivalents. | ||||
Phenolics | mg GAE/g | 0.26–29.21 | 1.38–30.25 | Ereifej et al. 2016; Embuscado 2015; Muñiz-Márquez et al. 2014; Opara and Chohan 2014; Sahu et al. 2017; Shahwar et al. 2012; Siddhartha et al. 2017; Tang et al. 2013; Yildiz 2016 |
Flavonoids | mg/g | 1.91–2.51 | 0.52 | Msaada et al. 2017; Siddhartha et al. 2017; Yashin et al. 2017 |
Terpenoids | mg LE/g | 37.1 ± 3.9 | - | Siddhartha et al. 2017 |
Alkaloids | mg AE/g | 0.47 ± 0.03 | - | |
Volatile part | ||||
α-Pinene | % | 1.2–10.9 | 1.90 | Darughe et al. 2012; Freires et al. 2014; Laribi et al. 2015; Raal et al. 2004; Sahib et al. 2012; Shahwar et al. 2012 |
Camphene | 1.78–44.99 | - | ||
Decanal | 0.10–4.69 | 1.73–19.09 | ||
Limonene | 0.10–7.17 | - | ||
γ-Terpinene | 3.53–14.42 | - | ||
Linalool | 37.6–87.54 | 13.97 | ||
Geranyl acetate | 0.90–17.57 | - | ||
trans-2-Dodecenal | 0.10–0.79 | 17.54–32.23 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; LE, linalool equivalents; AE, atropine equivalents. | |||
Phenolics | mg GAE/g | 4.98–24.66 | Chen et al. 2014; Dua 2012; Gallo et al. 2010; Hossain et al. 2011a; Juhaimi 2013; M. Lu et al. 2011; Siddhartha et al. 2017; Vallverdú-Queralt et al. 2014 |
Flavonoids | mg RE/g | 12.6 ± 0.1 | Siddhartha et al. 2017 |
Terpenoids | mg LE/g | 73.0 ± 5.6 | |
Alkaloids | mg AE/g | 1.5 ± 0.06 | |
Gallic acid | μg/g | 0.56–287.9 | Abdelfadel et al. 2016; Dua 2012; Hossain et al. 2011a; M. Lu et al. 2011; Vallverdú-Queralt et al. 2014 |
Protocatechuic acid | 3.44 | ||
Caffeic acid | 0.42–3.06 | ||
Chlorogenic acid | 4.18–86.50 | ||
Ferulic acid | 21.11 | ||
Rosmarinic acid | 3.29 | ||
Catechin | 14.08–189 | ||
Epicatechin | 6.43 | ||
Quercetin | 7.5–336.41 | ||
Luteolin | 2.24–79.7 | ||
Kaempferol | 215.81 | ||
Volatile part | |||
β-Pinene | % | 9.05–19.90 | Eikani et al. 2007; El-Ghorab et al. 2010; Jirovetz et al. 2006; Khan et al. 2017; Mohammadpour et al. 2012; Moghadam 2016; Nisha et al. 2014; Sowbhagya 2013; Viuda-martos et al. 2007 |
p-Cymene | 15.87–25.2 | ||
α-Pinene | 15.1–29.2 | ||
γ-Terpinene | 15.3–29.01 | ||
Limonene | 1.51–21.7 | ||
Cumin aldehyde | 18.7–40.88 | ||
1,8-Cineole | 1.10–18.10 | ||
Linalool | 0.10–10.5 | ||
α-Thujene | 0.30–3.05 | ||
Thymol | 5.01–40.05 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; LE, linalool equivalents; and AE, atropine equivalents. | |||
Phenolics | mg GAE/g | 5.5–532.8 | Ghasemzadeh et al. 2014; Igara et al. 2016; Ramkissoon et al. 2012; Sasidharan and Menon 2011; Siddhartha et al. 2017; Sivakumar and Meera 2013; Yogesh et al. 2012 |
Flavonoids | mg RE/g | 2.80–11.9 | Ghasemzadeh et al. 2014; Siddhartha et al. 2017; Sivakumar and Meera 2013; Yogesh et al. 2012 |
Terpenoids | mg LE/g | 31.5 ± 2.1 | Siddhartha et al. 2017 |
Alkaloids | mg AE/g | 0.33 ± 0.02 | |
Gallic acid | mg/g | 0.81–0.93 | Ghasemzadeh et al. 2014 |
Cinnamic acid | 0.06–0.07 | ||
Ferulic acid | 0.281 | ||
Vanillic acid | 0.52–0.78 | ||
Rutin | 0.04–0.08 | ||
Quercetin | 0.30–0.35 | ||
Epicatechin | 0.60–0.67 | ||
Catechin | 0.20–0.32 | ||
Naringin | 0.203 | ||
Myricetin | 0.50–0.70 | ||
Volatile part | |||
α-Pinene | % | 4.5–71.5 | Jain et al. 2017; Rajendran et al. 2014; Verma et al. 2013 |
β-Pinene | 0.5–13.6 | ||
Myrcene | 0.5–6.12 | ||
trans-β-Ocimene | 0.9–3.68 | ||
Linalool | 0.2–32.83 | ||
Sabinene | 0.5–66.10 | ||
trans-Caryophyllene | 1.6–18.0 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviation is: GAE, gallic acid equivalents. | |||
Phenolics | mg GAE/g | 2.15–71.29 | Isbilir and Sagiroglu 2011; Kamel 2013; Ninfali et al. 2005; Stankevičius et al. 2010 |
Flavonoids | mg/100 g | 52–672 | Ksouri et al. 2015; Ninfali et al. 2005; Yashin et al. 2017 |
Flavanols | 0.73 | Ninfali et al. 2005 | |
Quercetin | 48–110 | Justesen and Knuthsen 2001; Yashin et al. 2017 | |
Isorhamnetin | 15–72 | ||
Kaempferol | 16–24 | ||
Myricetin | 0.70 | ||
Volatile part | |||
α-Phellandrene | % | 19.12–62.49 | Chahal et al. 2017b; Hojjati 2017; Kazemi 2015a; Lawrence 1980; Singh et al. 2005a; Vokk et al. 2011 |
Limonene | 3.70–83.0 | ||
Carvone | 20.73–75.92 | ||
p-Cymene | 1.10–16.60 | ||
Sabinene | 0.14–11.34 | ||
Dill ether | 1.02–13.20 | ||
γ-Terpinen | 0.30–13.96 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviation is: GAE, gallic acid equivalents. | |||
Phenolics | mg GAE/g | 0.30–779.98 | Anwar et al. 2009a; Barros et al. 2009; Embuscado 2015; Hinneburg et al. 2006; Hossain et al. 2011a; M. Lu et al. 2011; Oktay et al. 2003; Roby et al. 2013a; Salami et al. 2016b; Tacouri et al. 2013; Ying et al. 2015 |
Flavonoids | mg/100 g | 84–18 | Anwar et al. 2009a; Dua et al. 2013; Gulfraz et al. 2005; Kaur and Arora 2009; Salami et al. 2016b; Tacouri et al. 2013; Yashin et al. 2017 |
Gallic acid | 27.71–66.0 | Badgujar et al. 2014; Dua et al. 2013; Hossain et al. 2011a; Križman et al. 2007; Kunzemann and Herrmann 1977; Rawson et al. 2013; Roby et al. 2013a; Salami et al. 2016b; Yashin et al. 2017 | |
Caffeic acid | 29–83.4 | ||
p-Coumaric acid | 5.45–42.40 | ||
Ellagic acid | 9.94 | ||
Ferulic acid | 1.32–69.70 | ||
Chlorogenic acid | 9.60–232.5 | ||
Myricetin | 19.80 | ||
Quercetin | 21.46–145 | ||
Kaempferol | 6.50–9.28 | ||
Luteolin | 2.11–10 | ||
Rutin | 10.40–69.70 | ||
Volatile part | |||
α-Pinene | % | 0.17–14.20 | Anwar et al. 2009a; Anwar et al. 2009b; Conforti et al. 2006; Diao et al. 2014; Karlsen et al. 1969; Miraldi 1999; Roby et al. 2013a; Ruberto et al. 2000; Shahmokhtar and Armand 2017; Sharopov et al. 2017; Telci et al. 2009 |
Limonene | 2.96–22.4 | ||
Estragole | 4.50–83.8 | ||
Fenchone | 1.40–10.5 | ||
β-Farnesene | 1.60–5.21 | ||
trans-Anethole | 15.10–90.6 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviation is: GAE, gallic acid equivalents; and QE, quercetin equivalents. | |||
Phenolics | mg GAE/g | 4.90–106.31 | Al-Juhaimi et al. 2016; Bukhari et al. 2008; Embuscado 2015; Kenny et al. 2013; Kumaravel and Alagusundaram 2014; Madhava Naidu et al. 2011; Premanath et al. 2011; Rababah et al. 2004; Saxena et al. 2016 |
Flavonoids | mg QE/g | 0.47–26.37 | Brar et al. 2013; Kumaravel and Alagusundaram 2014; Saxena et al. 2016 |
Saponins | g/100g | 5.12 ± 0.01 | Madhava Naidu et al. 2011 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; QE, quercetin equivalents; and LE, linalool equivalents. | |||
Phenolics | mg GAE/g | 0.16–271.03 | Beato et al. 2011; Benkeblia 2005; Bhandari et al. 2014; Bozin et al. 2008; Siddhartha et al. 2017; Szychowski et al. 2018; Tacouri et al. 2013 |
Flavonoids | mg QE/g | 0.12–3.99 | Bozin et al. 2008; de Queiroz et al. 2014; Huzaifa et al. 2014; Otunola et al. 2011; Siddhartha et al. 2017; Tacouri et al. 2013 |
Terpenoids | mg LE/g | 144.6 ± 1.0 | Siddhartha et al. 2017 |
Myricetin | mg/kg | 0.10–693.0 | Beato et al. 2011; Szychowski et al. 2018 |
Quercetin | 47.0–80.60 | ||
Gallic acid | 1.46–16.38 | ||
Caffeic acid | 0.10–106.0 | ||
Ferulic acid | 0.30–56.0 | ||
Vanillic acid | 0.15–105.0 | ||
p-Coumaric acid | 0.41–51.0 | ||
Syringic acid | 44.63–200.2 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviation is: GAE, gallic acid equivalents. | |||
Phenolics | mg GAE/g | 6.69–870.10 | Chari et al. 2013; Embuscado 2015; Ereifej et al. 2016; Hinneburg et al. 2006; M. Lu et al. 2011; Opara and Chohan 2014; Shirin and Jamuna 2010; Stoilova et al. 2007; Ying et al. 2015 |
Pyrogallo | mg/kg | 142.4–392.0 | Abdelfadel et al. 2016; Tohma et al. 2017 |
Ferulic acid | 88.8–224.7 | ||
Caffeic acid | 680.2–1600.0 | ||
Cinnamic acid | 754.4–1710.0 | ||
p-Hydroxybenzoic acid | 29.4–221.1 | ||
p-Coumaric acid | 170.2–291.4 | ||
Vanillin | 10.70–101.2 | ||
Rutin | 632.6–720.9 | ||
Kaempferol | 3.36 | Yashin et al. 2017 | |
Volatile part | |||
Camphene | % | 0.10–14.1 | Bartley and Jacobs 2000; El-Ghorab et al. 2010; Qin and Xu 2008 |
p-Cineole | 2.83–16.91 | ||
α-Terpineol | 0.10–10.90 | ||
Zingiberene | 8.40–24.58 | ||
Farnesene | 7.50–14.19 | ||
β-Bisabolene | 3.32–16.72 | ||
α-Curcumene | 2.29–4.42 | ||
Nerolidol | 0.17–2.0 | ||
β-Sesquiphellandrene | 4.27–7.64 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and CE, catechin equivalents. | |||
Phenolics | mg GAE/g | 5.20–96.2 | Hossain et al. 2012, 2011a; Jelali et al. 2011; Roby et al. 2013b; Vági et al. 2005a |
Rosmarinic acid | mg/g | 0.49–24.86 | Baâtour et al. 2013; Dhull et al. 2016; Hossain et al. 2011a; Hossain et al. 2012; Hossain et al. 2014; Roby et al. 2013b; Sellami et al. 2009 |
Caffeic acid | 0.10–0.28 | ||
Gallic acid | 2.0–2.20 | ||
Carnosic acid | 3.01–10.63 | ||
Carnosol | 1.7–5.89 | ||
Apigenin-7-O-glucosid | 0.83–0.87 | ||
Luteolin-7-O-glucoside | 4.6–9.38 | ||
Flavonoids | mg CE/g | 2.79–5.82 | Jelali et al. 2011; Sellami et al. 2009 |
Amentoflavone | mg/g | 1.20 | Roby et al. 2013b; Sellami et al. 2009 |
Luteolin | 0.41 | ||
Coumarin | 0.30 | ||
Quercetin | 0.46 | ||
Apigenin | 0.52–38.40 | ||
Volatile part | |||
4-Terpineol | % | 29.13–32.57 | Beltrame et al. 2013; Jelali et al. 2011; Mossa and Nawwar 2011; Novak et al. 2002; Sellami et al. 2009; Vági et al. 2005b; Vera and Chane-Ming 1999 |
γ-Terpinene | 2.11–15.40 | ||
trans-Sabinene hydrate | 3.50–11.61 | ||
cis-Sabinene hydrate | 19.90–24.66 | ||
α-Terpinen | 2.75–6.86 | ||
Limonene | 1.36–5.26 | ||
Sabinene | 3.91–4.94 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and QE, quercetin equivalents. | |||
Phenolics | mg GAE/g | 0.10–34.80 | Asika et al. 2016; Assa et al. 2014; De Soysa et al. 2016; Gupta et al. 2013; M. Lu et al. 2011; Opara and Chohan 2014 |
Flavonoids | mg QE/g | 1.10 | Asika et al. 2016 |
Volatile part | |||
Sabinene | % | 15.10–50.7 | Dorman et al. 2000; Ekundayo et al. 2003; Gupta et al. 2013; Juki et al. 2006; Kapoor et al. 2013; Morsy 2016; Muchtaridi et al. 2010; Piras et al. 2012 |
α-Pinene | 10.10–27.9 | ||
β-Pinene | 7.15–27.10 | ||
Myrcene | 0.70–3.10 | ||
1,8-Cineole | 1.50–3.50 | ||
Myristicin | 0.50–32.80 | ||
α-Phellandrene | 0.30–6.72 | ||
Limonene | 2.71–7.50 | ||
Terpinen-4-ol | 0.10–13.92 | ||
Safrole | 0.10-12.0 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and QE, quercetin equivalents. | |||
Phenolics | mg GAE/g | 2.69–384.70 | Galdon et al. 2008; Lee et al. 2014; Prakash et al. 2007; Ren et al. 2017a; Siddiq et al. 2013; Singh et al. 2009; Stankevičius et al. 2010; Viera et al. 2017; Yang et al. 2012 |
Flavonoids | mg QE/g | 2.70–183.95 | Lee et al. 2014; Ren et al. 2017a; Ren et al. 2017b; Singh et al. 2009; Yashin et al. 2017 |
Ferulic acid | mg/100 g | 210.4–1150.7 | Prakash et al. 2007; Singh et al. 2009 |
Gallic acid | 90.30–3540.0 | ||
Protocatechuic acid | 31.0–1380.0 | ||
Quercetin | 20.30–511.0 | Prakash et al. 2007; Singh et al. 2009; Yashin et al. 2017 | |
Kaempferol | 0.65–48.10 | ||
Isorhamnetin | 4.58 | ||
Delphinidin | 4.28 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and QE, quercetin equivalents. | |||
Phenolics | mg GAE/g | 1.71–214.20 | Hendel et al. 2016; Moreno et al. 2006; Ünver et al. 2009; Vallverdú-Queralt et al. 2014; Witkowska et al. 2013; Wojdyło et al. 2007; Zhang et al. 2016 |
Flavonoids | mg QE/g | 0.27–38.0 | Hendel et al. 2016; Yashin et al. 2017; Zhang et al. 2016 |
Rosmarinic acid | mg/g | 0.15–55.0 | Hernández-Hernández et al. 2009; Hossain et al. 2011a; Mena et al. 2016; Moreno et al. 2006; Vallverdú-Queralt et al. 2014; Wellwood and Cole 2004 |
Carnosic acid | 9.97–305.0 | ||
Carnosol | 5.03–162.0 | ||
Caffeic acid | 0.08–0.012 | ||
Volatile part | |||
1,8-Cineole | % | 2.30–43.77 | Bozin et al. 2007; Carvalho et al. 2005; Kadri et al. 2011; Rašković et al. 2014; Takayama et al. 2016 |
Camphor | 1.22–27.70 | ||
α-Pinene | 11.51–21.3 | ||
β-Pinene | 4.0–8.16 | ||
Limonene | 2.80–21.70 | ||
Camphene | 8.7–11.20 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; and RE, rutin equivalents. | |||
Phenolics | mg GAE/g | 6.54–16.0 | Hassane et al. 2011; Karimi et al. 2010 |
Flavonoids | mg RE/g | 5.88 ± 0.12 | |
Volatile part | |||
2,6,6-Trimethylcyclohexa-1,3-dienecarbaldehyd | % | 18.66 | Khayyat 2017; Sampathu et al. 1984 |
3,5,5-Trimethyl-4 methylenecyclohex-2-enone | 14.50 | ||
2,6,6-Trimethylcyclohex-2-ene-1,4-dione | 12.78 | ||
2,6,6-Trimethylcyclohexa-1,4-dienecarbaldehyde | 8.09 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; RE, rutin equivalents; and LE, linalool equivalents. | |||
Phenolics | mg GAE/g | 12.0 ± 0.01 | Siddhartha et al. 2017 |
Flavonoids | mg RE/g | 2.0 ± 0.02 | |
Terpenoids | mg LE/g | 160.0 ± 3.49 | |
Volatile part | |||
2-Phenyl acetaldehyde | % | 25.40 | Parthasarathy et al. 2008 |
2-Furfural | 20.70 | ||
Hexadecanoic acid | 18.10 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; TAE, tannic acid equivalent; and QE, quercetin equivalents. | |||
Phenolics | mg GAE/g | 2.13–40.65 | Embuscado 2015; Hossain et al. 2011a; Roby et al. 2013b; Vallverdú-Queralt et al. 2014; Zheng and Wang 2001 |
mg TAE/g | 9.07 | Nadia and Rachid 2013 | |
Flavonoids | mg QE/g | 8.56 | |
Caffeic acid | mg/g | 0.10–1.82 | Abdelfadel et al. 2016; Hossain et al. 2011a; Köksal et al. 2017; Vallverdú-Queralt et al. 2014; Zheng and Wang 2001 |
Carnosic acid | 6.41 | ||
Rosmarinic acid | 0.08–3.37 | ||
Cinnamic acid | % | 28.54 | Roby et al. 2013b |
Apigenin | 8.88 | ||
Luteolin | mg/g | 0.39–0.45. | Yashin et al. 2017; Zheng and Wang 2001 |
Volatile part | |||
α-Pinene | % | 1.31–8.0 | Al-Asmari et al. 2017; Borugă et al. 2014; Dauqan and Abdullah 2017; De Lira Mota et al. 2012; El-Nekeety et al. 2011; Grigore et al. 2010; Hudaib et al. 2002; Jarić et al. 2015; Kazemi 2015b; Nikolić et al. 2014; Ocaña and Reglero 2012; Rota et al. 2008; Santoro et al. 2007; Satyal et al. 2016; Šegvić Klarić et al. 2007 |
Carvarcrol | 18.51–45.0 | ||
p-Cymene | 8.41–38.9 | ||
Thymol | 24.7–80.4 | ||
Linalool | 0.72–39.2 | ||
1,8-Cineole | 0.40–6.23 | ||
Camphor | 0.70–15.14 | ||
Camphene | 0.75–10.54 | ||
γ-Terpinene | 9.50–30.90 |
Types of compound | Unit | Content | References |
---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; QE, quercetin equivalents; RE, rutin equivalents; LE, linalool equivalents; TE, tannic acid equivalents; and CE, catechin equivalents. | |||
Phenolics | mg GAE/g | 6.79–176.87 | Embuscado 2015; Ereifej et al. 2016; Maizura et al. 2011; Niranjan et al. 2013; Siddhartha et al. 2017; Tacouri et al. 2013 |
Flavonoids | mg QE/g | 2.810 ± 0.06 | Tacouri et al. 2013 |
mg RE/g | 31.90 ± 1.0 | Siddhartha et al. 2017 | |
Terpenoids | mg LE/g | 81.24 ± 6.50 | |
Total curcumin | % | 2.20–8.43 | Braga et al. 2003; Chinedum et al. 2015; Kimthet et al. 2017; Osorio-Tobón et al. 2014; Schieffer 2002; Yadav et al. 2013 |
Turmerone | 20.0–56.42 | Chen et al. 1983; Cooray et al. 1988; Ferreira et al. 2013; Gopalan et al. 2000; Li et al. 1997; Nigam and Ahmed 1991; Niranjan et al. 2013; Sandeep et al. 2016 | |
α-Turmerone | 8.40–70.30 | ||
Curlone | 1.55–20.83 | ||
β-Curcumene | 1.58–24.53 | ||
p-Cymene | 0.21–24.09 | ||
α-Curcumene | 12.20–34.0 | Hu et al. 1997; Kiso et al. 1983 | |
Sesquiterpines | 5.20–53.0 | Abdel-Lateef et al. 2016; Nisar et al. 2015 | |
Zingiberene | 0.98–36.80 | Li et al. 1997; Nigam and Ahmed 1991 |
Spices | DPPH | ABTS | FRAP | Reducing potential | ORAC | References |
---|---|---|---|---|---|---|
Abbreviations are: GAE, gallic acid equivalents; TE, trolox equivalents; AAE, ascorbic acid equivalents; DW, dry weight; and FW, fresh weight. | ||||||
Ajowan | 95.7 ± 3.0 (%) at 250 µg/100 µL | 127.3 ± 0.91 (mg TE/g) | 13.57 ± 0.12 (µmol Fe2+/g) | 12.78 ± 0.12 (Ec50 µg GAE/g) | – | Ishtiaque et al. 2013; Siddhartha et al. 2017; Tacouri et al. 2013 |
Basil | 2.46 ± 0.07 (g TE/100 g) | 2.87 ± 0.03 (g TE/100 g) | 5.83 ± 0.08 (g TE/100 g) | – | 17.57 ± 0.10 (g TE/100 g) | Hossain et al. 2011a |
Bay leaf | 65–95 (%), 216.2–736.54 (IC50 µg/mL) | 47.71 ± 13.84 (%), 101.16–1410.74 (IC50 µg/mL), 250.32–424.83 (µmol TE/g) | 504.25 ± 26.74 (µmol TE/g), 593.79 ± 7.89 (µmol of Fe/g) | 45.38 ± 2.6 (Ec50 µg GAE/ g) | – | Boulila et al. 2015; Kivrak et al. 2017; M. Lu et al. 2011; Muñiz-Márquez et al. 2014; Siddhartha et al. 2017; Soomro 2016; Ying et al. 2015 |
Black pepper | 19.5–82.78 (%) | 49.2 ± 0.6 (mg TE/g) | – | 11.60 ± 0.8 (Ec50 µg GAE/g) | – | Gülçin 2005; Siddhartha et al. 2017 |
Capsicum | 1174.58–3439.12 (mg TE/g) | 8–44.6 (μmol TE/g) | 14.1–82.3 (μmol TE/g) | – | – | Hervert-Hernndez et al. 2010; Padilha et al. 2015 |
Cardamom | 7.5 (%) | 38.2 ± 0.03 (mg TE/g) | 104.9 ± 5.3 (mg TE/g) | 15.16 ± 0.21 (Ec50 µg GAE/g) | – | De Soysa et al. 2016; Embuscado 2015; Siddhartha et al. 2017 |
Cinnamon | 1.88–364 (%), 33.96–107 (mg TE/g) | 89.09–319.8 (mg TE/g), 525.85–1119.9 (μmol TE/g) | 637 ± 46.78 (μmol TE/g), 104.9 ± 5.3 (mg TE/g) | 4.06 ± 0.3 (Ec50 µg GAE/g) | 22.14–44.77 (mg TE/g) | Abeysekera et al. 2013; De Soysa et al. 2016; Embuscado 2015; Gallo et al. 2010; M. Lu et al. 2011; Przygodzka et al. 2014; Siddhartha et al. 2017; Tacouri et al. 2013; Vallverdú-Queralt et al. 2014; Vidanagamage et al. 2016 |
Clove | 8.84–1353.3 (μmol TE/g) | 3.46–5.98 (μmol TE/g) | 2133 ± 6.87 (μmol TE/g), 974.3 ± 28.5 (mg TE/g) | 2.3 ± 0.09 (Ec50 µg GAE/g) | – | De Soysa et al. 2016; Embuscado 2015; Mohan et al. 2016; Siddhartha et al. 2017; Wojdyło et al. 2007 |
Coriander (seed) | 13.69–72.37 (%), 16.4 (μmol TE/100 g) | 9.22 (%), 18.9 ± 0.07 (mg TE/g) | 1.198–68.76 (mmol TE/100 g) | 13 ± 0.70 (Ec50 µg GAE/g) | – | Gallo et al. 2010; Muñiz-Márquez et al. 2014; Siddhartha et al. 2017 |
Cumin | 18.12–88.43 (%), 2.16–8.8 (mg TE/g) | 3.26–76.9 (mg TE/g) | 1.40–10.83 (mg TE/g) | 14.69 ± 1.4 (Ec50 µg GAE/g) | 5.76 (g TE/100 g) | Gallo et al. 2010; Hossain et al. 2011a; M. Lu et al. 2011; Siddhartha et al. 2017; Vallverdú-Queralt et al. 2014 |
Curry leaf | 61–76.43 (%) | 25.9 ± 0.15 (mg TE/g) | 2.12 (mg AAE/mL) | 21.29 ± 1.7 (Ec50 µg GAE/g) | – | Ramkissoon et al. 2012; Siddhartha et al. 2017; Yogesh et al. 2012 |
Dill | 40.10–86.0 (%) | – | 2.39 (mM equivalent to FeSO4.7H2O) | – | 43.92 (μmol TE/g) | Oshaghi et al. 2016; Kamel 2013; Ninfali et al. 2005 |
Fennel | 6.23–96.15 (%), 20.6 (μmol TE/g) | 1.23 (g TE/100 g), 55.77 (μmol TE/g) | 1.5 (g TE/100 g), 72.40 (μmol TE/g) | – | 6.64 (g TE/100 g) | Embuscado 2015; Ghanem et al. 2012; Hossain et al. 2011a; M. Lu et al. 2011; Salami et al. 2016a |
Fenugreek | 25.0–88.70 (%), 35.33 (mg TE/g) | – | 77.35 (mg TE/g) | – | – | Brar et al. 2013; Kenny et al. 2013; Saxena et al. 2016 |
Garlic | 27.5 (%) | 91.1 ± 0.1 (mg TE/g) | 0.36 ± 0.006 (g TE/100 g) | 8.22 ± 0.6 (Ec50 µg GAE/g) | – | Bhandari et al. 2014; Hossain et al. 2008; Siddhartha et al. 2017 |
Ginger | 32.38–90.1 (%) | 15.1–19.6 (mg TE/g) | 157.95 ± 2.2 (μmol TE/g) | 14.22 ± 0.9 (Ec50 µg GAE/g) | – | Hossain et al. 2008; M. Lu et al. 2011; Siddhartha et al. 2017; Stoilova et al. 2007 |
Marjoram | 91.89 (%), 8.21 (g TE/100 g) | 8.14 (g TE/100 g) | 12.26–18.96 (g TE/100 g) | – | 25.36 (g TE/100 g) | Dhull et al. 2016; Hossain et al. 2012, 2011a |
Nutmeg | 63.04–88.7 (%) | 213.91 ± 17.65 (μmol TE/g) | 369.50 ± 2.98 (μmol TE/g) | – | – | Gupta et al. 2013; M. Lu et al. 2011 |
Onion | 89.72 (%), 1.42–5.20 (μmol TE/g) | 9.70 ± 0.03 (mg TE/g) | 2.48–5.76 (μmol TE/g) | 22.12 ± 2.9 (Ec50 µg GAE/g) | – | Lee et al. 2014; X. Lu et al. 2011; Siddhartha et al. 2017 |
Rosemary | 90.10 (%), 11.02 ± 0.10 (g TE/100 g), 513 ± 5.99 (μmol TE/100 g) | 38.70 ± 0.11 (μmol TE/100 g), 18.34 ± 0.20 (g TE/100 g) | 662 ± 4.66 (μmol TE/100 g), 47.90 (mmol/100 g), 14.54 ± 0.25 (g TE/100 g) | – | 26.90 ± 0.20 (g TE/100 g) | Embuscado 2015; Hossain et al. 2011a; Wojdyło et al. 2007 |
Saffron | 15.69–19.67 (%) | 0.04–1.25 (mmol TE/100 g) | 17.5–391.12 (mmol TE/100 g) | – | – | Embuscado 2015; Gallo et al. 2010 |
Tamarind (fruit pulp) | – | 79.6 ± 0.56 (mg TE/g) | – | 10.4 ± 0.57 (Ec50 µg GAE/g) | – | Siddhartha et al. 2017 |
Thyme | 52 (%), 4.34 ± 0.06 (g TE/100 g), 1.98 ± 0.17 (mmol TE/g) | 15.31 ± 0.10 (g TE/100 g), 2.39 ± 0.17 (mmol TE/g) | 8.80 ± 0.02 (g TE/100 g), 56.3–59.1 (mmol/100 g) | – | 20.64 ± 0.07 (g TE/100 g) | Embuscado 2015; Hossain et al. 2011a; Vallverdú-Queralt et al. 2014 |
Turmeric | 100 ± 2.56 (μmol TE/100 g), 9.60 (μmol TE/g) | 19.50 ± 0.45 (μmol TE/100 g), 121.8 ± 0.9 (mg TE/g) | 62.60 ± 1.01 (μmol TE/100 g), 10.20 (mmol/100 g) | 25.55 ± 0.8 (Ec50 µg GAE/g) | – | Embuscado 2015; Siddhartha et al. 2017; Wojdyło et al. 2007 |
Spice | Active compound | Test microorganism | References |
---|---|---|---|
Ajowan | Thymol, carvacrol, and eugenol | Enterococcus faecalis, Streptococcus mutans, Klebsiella pneumoniae, E. coli, Staphylococcus aureus, Aspergillus ochraceus Aspergillus parasiticus, Aspergillus niger, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella typhimurium, and Enterobactor aerogen | Ganapathi and Roy 2017; Hassanshahian et al. 2014; Kim et al. 2016; Mihajilov-Krstev et al. 2009; Moein et al. 2015; Omidpanah et al. 2016; Paul et al. 2011; Siddhartha et al. 2017 |
Aniseed | t-Anithole | Micrococcus luteus, Mycobacterium smegmatu, Staphylococcus aureus, Bacillus cereus, Proteus vulgaris, Pseudomonas aeruginosa, Bacillus subtilis, Paenibacillus larvae, and E. coli | Al-Bayati 2008; Ates and Erdogrul 2003; Foroughi et al. 2016; Gende et al. 2009; Mohamed et al. 2015; Salim et al. 2016 |
Basil | Linalool, methyl chavicol, 1,8-cineole, eugenol, and estragol | Staphylococcus aureus, Enterococcus, Pseudomonas, Escherichia coli, Bacillus subtilis, Pasteurella multocida, Aspergillus flavus, Aspergillus niger, Mucor mucedo, Fusarium solani, Botryodiplodia theobromae, Rhizopus solani, Cladosporium herbarum, Eurotium amstelodami, Eurotium chevalieri, Botrytis fabae, Fusarium oxysporum, and Rhizopus nigricans | Abou El-Soud et al. 2015; Jakowienko et al. 2011; Hussain et al. 2008; Opalchenova and Obreshkova 2003; Oxenham et al. 2005; Reuveni et al. 1984; Stanojevic et al. 2017 |
Bay Leaf | 1,8-Cineole and sabinene | Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Serratia sp., Proteus sp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus sp., Pseudomonas aeruginosa, Acinetobacter baumanii, Glomus deserticola, and Glomus intraradices | Bennadja et al. 2013; Dadalioǧlu and Evrendilek 2004; Hassiotis 2010; Ramos et al. 2012 |
Black Pepper | Piperine and β-caryophyllene | Escherichia coli, Pseudomonas aerogenosa, Proteus mirabilis, Staphylococcus aureus, Klebsiella pneumonia, Bacillus subtilis, Alternaria alternata, Aspergillus niger, Aspergillus flavus, Fusarium oxysporum, Fusarium graminearum, Penicillium viridcatum, Aspergillus ochraceus, and Candida albicans | Akthar et al. 2014; Karsha and Lakshmi 2010; Mohammed et al. 2016; Morsy and Abd El-Salam 2017; Rani et al. 2013; Singh et al. 2004 |
Capsicum | Capsaicin and capsanthin | Listeria monocytogenes, Escherichia coli, Cryptococcus neoformans, Candida albicans, and Aspergillus flavus | Anikwe et al. 2017 |
Cardamom | 1,8-Cineol and α-terpinyl acetate | Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhi, Aspergillus terreus, Penicillium purpurogenum, Fusarium graminearum, and Penicillium madriti | Kapoor et al. 2008; Kubo et al. 1991; Singh et al. 2008 |
Cinnamon | Cinnamaldehyde and eugenol | Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomona aeruginosa, Pseudomonas fluorescens, Lactobacillus plantarum, Listeria monocytogenes, Candida albicans, Aspergillus niger, Rhodotorula glutinis, Aspergillus ochraceus, and Fusarium moniliforme | Hoque et al. 2008; Kong et al. 2007; Mazimba et al. 2015; Nanasombat and Wimuttigosol 2011 |
Clove | Eugenol | Staphylococcus aureus, Escherichia coli, Aeromonas hydrophila, Trichophyton mentagrophytes, Citrobacter freundii, Pseudomonas aeruginosa, Yersinia enterocolitica, Trichophyton rubrum, Epidermophyton floccosum, Microsporum gypseum, Fusarium oxysporum, Fusarium commune, Fusarium redolens, Candida, and Aspergillus | Hamini-Kadar et al. 2014; Lee et al. 2009; Park et al. 2007; Pinto et al. 2009; Saikumari et al. 2016 |
Coriander | Linalool, camphor, and alcohols | Saccharomyces cerevisiae, Escherichia coli, Bacillus megaterium, Bacillus subtilis, Bacillus cereus, Enterococcus Faecalis, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Klebsiella, and Candida. | Lo Cantore et al. 2004; Sasi Kumar et al. 2014; Silva et al. 2011; Silva and Domingues 2017; Wong and Kitts 2006; Yildiz 2016 |
Cumin | Cumin aldehyde, cymene, and thymol | Agrobacterium, Clavibacter, Curtobacterium, Ralstonia, Rhodococcus, Erwinia, E. coli, Bacillus subtilis; Staphylococcus epidermidis, Staphylococcus aureus, Lactococcus garvieae, Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Aspergillus flavus | Iacobellis et al. 2005; Jirovetz et al. 2005; Kedia et al. 2014; Mijiti et al. 2017; Pour et al. 2014 |
Curry leaf | α-Pinene and sabinene | Staphylococcus aureus, Micrococcus luteus, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella typhi, Escherichia coli, Aspergillus niger, Candida albicans, Fusarium oxysporum, Rhizoctonia solani, Shigella sonnei, and Candida utilis | Malwal and Sarin 2011; Rajnikant et al. 2015; Selvamani and Balamurugan 2014; Vats et al. 2011 |
Dill | Carvone, α-phellandrene, and limonene | Bacillus cereus, Staphylococcus aureus, Streptococcus facium, E. coli, Salmonella typhi, Shigella dysenteriae, Listeria monocytogenes, Bacillus subtilis, Pseudomonas Aeruginosa, Salmonella enteritidis, Candida albicans, Penicillium citrinum, and Aspergillus niger | Hojjati 2017; Singh et al. 2005a; Stanojević et al. 2016 |
Fennel | t-Anethole and limonene | Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus, Staphylococcus epidermidis, Aspergillus flavus, Bacillus cereus, Alternaria alternata, Rhizoctonia solani, Fusarium oxysporum, and Candida albicans | Anwar et al. 2009a; Anwar et al. 2009b; Dua et al. 2013; Ozcan et al. 2006; Roby et al. 2013a; Senatore et al. 2013 |
Fenugreek | Flavonoids | Escherichia coli, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis, Shigella flexneri, Salmonella typhi, Pseudomonas aeruginosa, Aspergillus niger, Candida parapsilosis, Candida albicans, Trichophyton rubrum, Botrytis cinerea, Fusarium graminearum, and Rhizoctinia solani | Anbumalarmathi et al. 2016; Dathar et al. 2017; Haouala et al. 2008; Kumari et al. 2016; Premanath et al. 2011; Walli et al. 2015 |
Garlic | Allicin | Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Salmonella enteritidis, E. coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans, Candida stellatoidea, Trichophyton mentagrophytes, and Microsporum canis | Benkeblia 2004; Hughes and Lawson 1991; Kallel et al. 2014; Rees et al. 1993; Strika et al. 2017 |
Ginger | Gingerol, shogaols, and zingerone | Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Shigella sonnei, Bacillus subtilis, Pseudomonas aeruginosa, Candida glabrata, Candida albicans, Aspergillus nige, Aspergillus ochraceous, Costus discolor, Rhizoctonia solani, and pilosoma obliqua | Agarwal et al. 2001; Gao and Zhang 2010; Gull et al. 2012; Habsah et al. 2000; Sah et al. 2012; Sabulal et al. 2006; Yassen and Ibrahim 2016 |
Marjoram | 4-Terpineol and carvacrol | Pseudomonas fluorescen, E. coli, Salmonella, Staphylococcus aureus, Bacillus cereus, Aspergillus niger, Trichoderma viride, Penicillium cyclopium, Fusarium solani, Candida albicans, Aspergillus niger, Rhizopus oryzae, Rhizoctonia oryzae-sativae, and Pentatrichomonas hominis | Aligiannis et al. 2001; Busatta et al. 2008; Charai et al. 1996; Deans and Svoboda 1990; Kozłowska et al. 2010; Leeja and Thoppil 2007; Omara et al. 2014; Vági et al. 2005 |
Nutmeg | Sabinene and myristicin | E. coli, Staphylococcus aureus, Streptococcus mutans, Staphylococcus epidermis, Streptococcus salivarius, Streptococcus mitis, Shigella Dysenteriae, Salmonella Typhi Fusobacterium nucleatum, Porphyromonas gingivalis, Aspergillus niger, and Fusarium graminearum | Gupta et al. 2013; Narasimhan and Dhake 2006; Nurjanah et al. 2017; Shafiei et al. 2012; Singh et al. 2005b |
Onion | Quercetin and kaempferol | E. coli, Bacillus subtilis, Streptococcus aureus, Klebsiella pneumonia, Salmonella typhi, Salmomella Enteritidis, Pseudomonas aeruginosa, Fusarium oxysporum, Aspergillus niger, Penicillium cyclopium, Microsporum canis, and Trichophyton simii | Azu and Onyeagba 2006; Begum and Yassen 2015; Benkeblia 2004; Ma et al. 2018; Ye et al. 2013; Zohri et al. 1995 |
Rosemary | Carnosol, rosmanol, borneol, and α-pinene | Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Campylobacter jejuni, Salmonella typhi, Salmonella enteritidis, Shigella sonei, Listeria monocytogenes, Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Fusarium graminearum, and Candida albicans | Abramovič et al. 2012; Angioni et al. 2004; Bozin et al. 2007; Issabeagloo et al. 2012; Genena et al. 2008; Jarrar et al. 2010; Okoh et al. 2010; Özcan and Chalchat 2008; Pintore et al. 2002 |
Saffron | Safranal and crocin | Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Salmonella enteritidis, Bacillus anthracis, Shigella flexneri, Klebsiella pneumonia, Proteus vulgaris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger | Jadouali et al. 2018; Khayyat 2017; Muzaffar et al. 2016; Parray et al. 2015; Soureshjan and Heidari 2014 |
Tamarind | Phenolic acids | Klebsiella pneumonia, Micrococcus luteus, Salmonella paratyphi, Bacillus subtilis, Salmonella typhi Pseudomonas, E. coli, aeruginosa, Staphylococcus aureus, Aspergillus niger, Candida tropicalis, Candida albicans, and Debaryomyces hansenii | Adedayo et al. 2016; Doughari 2006; Gumgumjee 2012; Nwodo et al. 2011 |
Thyme | Thymol, carvacrol, and tannins | Rhizopus oryzae, Staphylococcus aureus, Bacillus licheniformis, Bacillus cereus E. col, Salmonella enterica, Pseudomonas aeruginosa, Enterococcus faecalis, Pseudomonas fluorescens, Listeria innocua, Listeria monocytogenes, Proteus vulgaris, and Salmonella Thyphimurium | Al-Bayati 2008; Boskovic et al. 2015; De Lira Mota et al. 2012; Marino et al. 1999; Nikolić et al. 2014; Rota et al. 2008; Varga et al. 2015 |
Turmeric | Curcuminoids | Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumonia, E. coli, Pseudomonas aeruginosa, Shigella spp., Salmonella typhi, and Candida albicans | Behera and Rath 2011; Gul and Bakht 2015; Gupta et al. 2015; Lourenço et al. 2013; Negi et al. 1999; Niamsa and Sittiwet 2009 |
Health effects | Spices/bioactives | Results/mechanisms | References |
---|---|---|---|
Anticancer | Turmeric (curcumin) | Inhibited head and neck cancer. | Aggarwal et al. 2004; LoTempio et al. 2005 |
Inhibited the growth of lung cancer. | Abbas et al. 2015; Starok et al. 2015 | ||
Reduced breast cancer. | Bimonte et al. 2015; Strofer et al. 2011 | ||
Inhibited proliferation of gastric cancer cell by inducing apoptosis. | Liu et al. 2014 | ||
Reduced colorectal cancer. | Carroll et al. 2011 | ||
Inhibited uterus cancer by eliminating HPV+ cervical cancer cells. | Debata et al. 2013 | ||
Delayed prostate cancer. | Shah et al. 2012 | ||
Increased cell death in a hematopoietic tumor. | Staege et al. 2013 | ||
Ginger (6-shogaol) | Possessed cytotoxicity on human lung cancer A549 and breast cancer MDA-MB-231 cells. | Hsu et al. 2015 | |
Inhibited human COLO 205 colorectal cancer cells via caspase activation, ROS production, and GADD 153 expression. | Min et al. 2008 | ||
Ginger (6-gingerol) | Inhibited cell proliferation and induced apoptosis in colon cancer cells. | Radhakrishna et al. 2014 | |
Ginger (shogaols) | Exhibited toxicity towards human colon cancer cells. | Fu et al. 2014 | |
Ginger extract | Induced apoptosis in human prostate cancer cells. | Karna et al. 2012 | |
Ginger | Suppressed colon cancer in the presence of the procarcinogen 1,2-dimethylhydrazine. | Manju and Nalini 2005 | |
Garlic (diallyl disulfide) | Possessed cytotoxicity effects against breast cancer. | Xiao et al. 2014 | |
Garlic (diallyl sulfide and diallyl disulfide) | Inhibited arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct in a human promyelocytic leukemia cell. | Lin et al. 2002 | |
Suppressed diethylstilbestrol-induced DNA damage in breast epithelial cells. | McCaskill et al. 2014 | ||
Anticarcinogenic effects in human gastric cancer cells. | Ling et al. 2014 | ||
Garlic | Inhibited colorectal cancer. | Tung et al. 2015 | |
Garlic (diallyl trisulfide) | Inhibited human leukemic cell line U937. | Suda et al. 2014 | |
Inhibited prostate cancer cells PC-3 and noncancerous human prostate epithelial cells PNT1A. | Borkowska et al. 2013. | ||
Garlic | Reduced the growth of lung tumor cells. | Jo et al. 2014 | |
Onion | Exhibited strong protective effects on the DNA molecule and antiproliferative property on human cancer cell mainly breast cancer. | Fredotovíc et al. 2017 | |
Onion (quercetin) | Inhibited human oral cancer cells. | Lai et al. 2013 | |
Onion (ethyl acetate extract) | Induced human breast cancer cells apoptosis and decreased lipid accumulation of 3T3-L1 adipocytes via inhibiting intracellular fatty acid synthase activity. | Wang et al. 2012 | |
Red onion | Potential decrease the risk of ovarian cancer. | Inoue-Choi et al. 2013 | |
Saffron | Alveolar basal epithelial carcinoma cells were inhibited, which might be a potential anticancer agent in lung cancer. | Samarghandian et al. 2011 | |
Saffron (crocetin) | Inhibited gastric cancer cells. | Bathaie et al. 2013 | |
Saffron (crocin) | Induced an autophagy-independent cell death in colon cancer cells. | Amin et al. 2015 | |
Reduced cell proliferation in the malignant prostate cancer cells. | D’Alessandro et al. 2013 | ||
Exhibited potential cytotoxic effects on leukemic cells. | Rezaee et al. 2013 | ||
Black pepper (piperine) | Inhibited the growth of triple negative breast cancer cells. | Greenshields et al. 2015 | |
Inhibited breast cancer cells via activating caspase-3 and PARP cleavage. | Do et al. 2013 | ||
Suppressed prostate cancer cells. | Makhov et al. 2012; Samykutty et al. 2013 | ||
Inhibited cell cycle progression and induced apoptosis. | Yaffe et al. 2013 | ||
Capsicum (capsaicin) | Showed pro-apoptotic activity in human small cell lung cancer cells. | Lau et al. 2014 | |
Inhibited breast cancer cells. | Wu et al. 2014 | ||
Inhibited the proliferation of human gastric cancer cells and induced apoptosis. | Park et al. 2014a | ||
Inhibited cholangiocarcinoma cells via Hedgehog signaling pathway. | Wutka et al. 2014 | ||
Reduced prostate tumors. | Venier et al. 2015 | ||
Induced apoptosis in acute lymphoblastic leukemia cells. | Bozok et al. 2014 | ||
Rosemary (leaf extracts) | Exerted a cytotoxic effect against colon cancer cells. | Gonzalez-Vallinas et al. 2013 | |
Rosemary (carnosic acid) | Showed anticancer properties in pancreatic and colon cancer via GCNT3 expression. | Gonzalez-Vallinas et al. 2014a | |
Rosemary (carnosol) | Induced apoptosis in colon cancer via generating ROS. | Park et al. 2014b | |
Decreased glutathione in the adult lymphoma cells. | Ishida et al. 2014 | ||
Rosemary (extract) | Showed antitumor activity against breast cancer cells. | Gonzalez-Vallinas et al. 2014b | |
Suppressed tumor growth in human prostate cancer cells. | Petiwala et al. 2014 | ||
Blocked clonogenic survival, inhibited proliferation, and enhanced apoptosis of A549 lung cancer cells. | Moore et al. 2016 | ||
Clove (eugenol) | Inhibited breast cancer via targeting the E2F1/survivin pathway. | Al-Sharif et al. 2013 | |
Exhibited anti-inflammatory activities in human cervical cancer cells. | Hussain et al. 2011 | ||
Exhibited an effective anticancer activity in the mammary carcinoma model in vivo and in vitro. | Kubatka et al. 2017 | ||
Cinnamon (cinnamaldehyde) | Exerted a synergistic effect on cytotoxicity in colorectal carcinoma cells. | Yu et al. 2014 | |
Cinnamon (aquas extract) | Induced apoptosis in the myelocytic leukemia cells. | Assadollahi et al. 2015 | |
Bay leaf | Inhibited melanoma cell growth. | Panza et al. 2011 | |
Cumin | Spent cumin generated from Ayurvedic industry showed Inhibitory activity in arresting the cell cycle and inducing apoptosis. | Arun et al. 2016 | |
Cardamom | Potential chemopreventive agent against forestomach cancer. | Qiblawi et al. 2015 | |
Coriander (essential oil) | Showed low cytotoxicity with putative mechanisms via modulation of gene expression in chemokine as well as mitogen-stimulated protein kinase pathways. | Freires et al. 2014 | |
Curry leaf | Inhibited the growth of breast cancer cell line (MDA-MB-231). | Ghasemzadeh et al. 2014 | |
Fennel seed (methanolic extract) | Showed anticancer potential against breast cancer and liver cancer cell lines. | Mohamad et al. 2011 | |
Fenugreek seeds | Inhibited 7,12-dimethyl benz(α)anthracene-induced breast cancer in rats at 200 mg/kg body wt. | Amin et al. 2005 | |
Showed in vitro cytotoxicity against different human cancer cells lines such as lung, liver, neuroblastima, and colon. | Verma et al. 2010 | ||
Marjoram (ethanol extract) | Exhibited significant cytotoxicity to fibrosarcoma cancer cell line and minimum toxicity to normal human lymphocytes when compared to the controls. | Rao et al. 2014 | |
Nutmeg (myristicin) | Altered mitochondrial membrane function, induced apoptotic mechanisms and modified gene expression in human leukemia K562 cells. | Martins et al. 2014 | |
Tamarind bark (cantharidin) | Responsible for inhibition of proliferation and induction of apoptosis in the cancer cells (HeLa and PA-1). | Shirisha and Varalakshmi 2016 | |
Tamarind (caffeic acid) | Potential protection of HepG2 cells against lipid peroxidation. | Razali et al. 2015 | |
Thyme (essential oil) | Inhibited the growth of UMSCC1 tumor cells at high concentrations (369 μg/mL) through N-glycan biosynthesis and extracellular signal-regulated kinase 5 signaling. | Sertel et al. 2011 | |
Anti-diabetic | Bay leaf | Reduced type 2 diabetes. | Khan et al. 2009 |
Cinnamon | Improved fasting blood glucose in people with type 2 diabetes. | Davis and Yokoyama 2011 | |
Reduced triacylglycerol, total cholesterol, serum glucose, and LDL cholesterol levels. | Khan et al. 2003 | ||
Fenugreek | Controlled of type 2 diabetes mellitus in the form of soaked in hot water. | Kassaian et al. 2009 | |
Fenugreek seeds | Showed beneficial effects on glycemic control in persons with diabetes. | Neelakantan et al. 2014 | |
Cumin seed | Improved the activities of chymotrypsin, pancreatic trypsin, and amylase (1.25% cumin for 8 weeks). | Platel and Srinivasan 2000 | |
Cumin (cuminaldehyde) | Inhibited lens aldose reductase and α-glucosidase of rats. | Lee 2005 | |
Cumin | Decreased the blood glucose and plasma level and also tissue lipids in alloxan diabetic rats. | Dhandapani et al. 2002 | |
Ginger | Improved total antioxidant activity and glycemic indices in type 2 diabetes patients. | Shidfar et al. 2015 | |
Exhibited nephroprotective effect through activities of intra-mitochondrial and extra-mitochondrial enzymes. | Ramudu et al. 2011 | ||
Exhibited potential hypoglycemic properties through its effects on the activities of glycolytic enzymes. | Abdulrazaq et al. 2012 | ||
Turmeric | Exhibited beneficial effect on oxidative stress, inflammation, and blood glucose. | Selvi et al. 2015 | |
Inhibited secretion of leptin, overproduction of ROS, and pro-inflammatory mediators, whereas increased adiponectin in plasma, secretion of insulin, and serum adiponectin insulin. | Yadav and Chaudhury 2016 | ||
Onion (quercetin) | Lowered glycemic response and prevented glucose absorption. | Cermak et al. 2004 | |
Onion | Induced alleviation of hyperglycemia in streptozotocin diabetic rats. | Campos et al. 2003 | |
Exhibited hypoglycemic effects, when ingested of crude onion (100 g) caused a significant reduction in fasting blood glucose in type 1 and 2 diabetic patients. | Eldin et al. 2010 | ||
Clove | Could improve the mechanism of insulin and lower glucose, triacylglycerol, LDL, and total cholesterol level. | Khan et al. 2006 | |
Capsicum (oleoresin) | Had a lower level of sugars induced by the inhibitory activity of alpha amylase. | Sricharoen et al. 2017 | |
Curry leaf | Lowered blood glucose and blood cholesterol levels in diabetic ob/ob mice. | Xie et al. 2006 | |
Dill | Suggested for the treatment of advanced glycation endproducts-mediated complications in diabetic patients. | Oshaghi et al. 2015 | |
Fennel (fruit) | Lowered glucose and triacylglycerol contents as compared with diabetic control. | Dongare et al. 2010 | |
Fennel (essential oil) | Corrected the hyperglycemia and pathological abnormalities in diabetic induced rats. | El-Soud et al. 2011 | |
Garlic | Lowered fasting blood glucose and postprandial blood glucose. | Kumar et al. 2013 | |
Nutmeg (macelignan) | Reduced serum glucose, free fatty acid, insulin, and triacylglycerol levels in db/db mice and improved insulin sensitivity and lipid metabolic disorders by activating peroxisome proliferator-activated receptor α/γ and attenuating endoplasmic reticulum stress. | Han et al. 2008 | |
Tamarind seeds (aqueous extract) | Minimized hyperglycemic excursion by repressing pancreatic beta cell damage and normalizing sterol regulatory element-binding proteins (SREBP-1c) concentration. | Sole et al. 2013 | |
Immunomodulatory effect | Black pepper and cardamom | Exerted immunomodulatory roles and antitumor activities. | Majdalawieh and Carr 2010 |
Clove | Showed potential immunomodulatory effect on macrophages. | Dibazar et al. 2015 | |
Onion (lectin) | Exhibited lymphoproliferative activity through thymocytes, induced a Th1 immune response, and proinflammatory responsive mode in macrophages and promote phagocytosis. | Prasanna and Venkatesh 2015 | |
Saffron | Decreased blood glucose, total lipids, triacylglycerol, malondialdehyde, cholesterol, and nitric oxide levels, whereas increased catalase, glutathione level, and superoxide dismutase activities in a dose dependent manner. | Samarghandian et al. 2017 | |
Anti-inflammatory | Cumin (essential oil) | Exerted anti-inflammatory activities via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK. | Wei et al. 2015 |
Controlled inflammation process by inhibiting the arachidonic acid metabolism. | Chainani-Wu 2003 | ||
Inhibited cyclooxygenase and lipoxygenase. | Mustafa et al. 1993 | ||
Marjoram and sweet basil (essential oils) | Suppressed the production of pro-inflammatory cytokines, gene expression in LPS, and ox-LDL THP-1 activation. | Arranz et al. 2015 | |
Black pepper (oleoresin) | Exhibited comparable anti-inflammatory activities with ascorbic acid and diclofenac sodium. | Nagavekar and Singhal 2017 | |
Dill (sabinene) | Showed a potent NO-scavenging capacity and inhibited inducible NO synthase expression. | Kazemi 2015a | |
Fennel (methanolic extract) | Showed anti-inflammatory, central analgesic, and antitype IV allergic properties at a dose of 200 mg/kg in mice and rats. | Choi and Hwang 2004 | |
Fenugreek seeds (ethanol extract) | Showed significant anti-inflammatory effect in a dose dependent manner when compared with saline control at 75 and 150 mg/kg b.w. | Subhashini et al. 2011 | |
Garlic (powder extracts) | Decreased lipopolysaccharide-induced production of interleukin-1 and tumor necrosis factor-α in human blood. | Keiss et al. 2003 | |
Garlic (alliin) | Controlled the inflammatory state of adipocytes by lowering IL-6 and MCP-1 expressions. | Quintero-Fabian et al. 2013 | |
Red ginger | Suppressed acute and chronic inflammation and also inhibited NO production. | Shimoda et al. 2010 | |
Nutmeg (macelignan) | Exhibited anti-inflammatory activities on T helper type cell-mediated allergic lung inflammation. | Shin et al. 2013 | |
Red onion scales (methanolic extract) | Indicated a protective effect against atypical prostatic hyperplasia induced rats that may have potential anti-inflammatory and immunomodulatory properties. | Elberry et al. 2014 | |
Rosemary (carnosic acid) | Exhibited potential protection against lipopolysaccharide-induced oxidative injury and liver toxicity. | Xiang et al. 2013 | |
Tamarind seed (methanol extract) | Demonstrated dose dependant anti-inflammatory activity, lack ulcerogenicity, and central analgesic activity. | Bandawane et al. 2013 | |
Thyme (essential oil, thymol, and cavacrol) | Inhibited inflammatory edema and leukocyte migration. | Fachini-Queiroz et al. 2012 | |
Digestive stimulant action | Ginger | Stimulated the activity of terminal digestive enzymes of the small intestinal mucosa. | Platel and Srinivasan 1996 |
Ginzer and fenugreek | Increased bile acid production and decreased bile solids when they were given in the diet. | Bhat et al. 1985 | |
Ginger, fenugreek, turmeric capsicum, and black pepper | Stimulated the activity of digestive enzymes such as pancreas-lipase, proteases, and amylase. | Platel and Srinivasan 2000 | |
Effects on gastro-intestinal tract | Ginger | Increased the intestinal absorption of beta-carotene. | Veda and Srinivasan 2009 |
Black peppe (piperine) | Increased gastrointestinal absorption of the coenzyme Q10. | Badmaev et al. 2000 | |
Dill (seed extracts) | Exhibited mucosal protective and antisecretory effects of the gastric mucosa in mice. | Hosseinzadeh et al. 2002 | |
Fennel (seed oil emulsion) | Was superior to placebo in decreasing intensity of infantile colic. | Alexandrovich et al. 2003 | |
Lipid-lowering effect | Ginger (oleoresin) | Oleoresin (0.5% ) lowered serum & liver cholesterol. | Gujral et al. 1978 |
Ginger (aqueous extract) | Decreased LDL-cholesterol, serum total cholesterol, and triacylglycerol. | El-Rokh et al. 2010 | |
Ginger (gingerol) | Prevented high fat diet-induced hyper-lipidemia by cholesterol metabolism. | Naidu et al. 2016 | |
Coriander (seed oil) | Had hypocholesterolemic activities in rats fed a cholesterol-rich diet. | Ramadan et al. 2008 | |
Rosemary (phenolic compounds) | Protected against hyperglycemia and hypercholesterolemia-induced oxidative stress and improved serum lipid profile. | Labban et al. 2014 | |
Saffron (aqueous extract) | Reduced the mean systolic blood pressure in desoxycorticosterone acetate salt treated rats in a dose dependent manner. | Imenshahidi et al. 2013 | |
Tamarind pulp (aqueous extract) | Lowered the levels of plasma total cholesterol, triglyceride, and low density lipoprotein, and increased high-density lipoprotein, with the reduction of body weight. | Azman et al. 2012 | |
Anti-obesity effects | Ginger | Exerted antiobesity effects in C57BL/6J mice. | Misawa et al. 2015 |
Ginger (methanol and ethyl acetate extracts) | Reduced body weight, insulin, glucose, and lipid levels as compared to obese control mice with 250 mg/kg for 8 weeks. | Goyal and Kadnur 2006 | |
Capsicum | Exhibited potential anti-obesity effect through the decrease of the LPL mRNA expression level. | Baek et al. 2013 | |
Nutmeg | Final body weights and weight gain in the tetrahydrofuran-treated mice were significantly lower than those of the high-fat diet -induced obesity mice. | Nguyen et al. 2010 | |
Saffron (crocin) | Minimized the leptin levels due to the reduction of fat mass and improvement of insulin sensitivity. | Kianbakht and Hashem 2015 | |
Tamarind (seed) | Trypsin inhibitor lowered weight gain and food consumption as well as improved plasmatic cholecystokinin contents. | do Nascimento Campos Ribeiro et el. 2015 | |
Turmeric (curcumin) | Inhibited triacylglycerol and cholesterol synthesis, and the formation of lipid droplet in HepG2 cell as anti-obesity parameters. | Budiman et al. 2015 | |
Antioxidative | Ginger (6-gingerol) | Decreased peroxidation by Fe3+/Ascorbate. | Aeschbach et al. 1994 |
Prevented against peroxynitrite-mediated oxidative DNA damage and inhibited NO synthesis. | Ippoushi et al. 2003 | ||
Ginger (6-paradol and 6-gingerol) | The pungent components of ginger possessed anti-inflammatory and antioxidative activities. | Surh 1999 | |
Black pepper (piperine) | Modulated the enzyme systems functioning and minimized oxidative damage in the body. | Vijayakumar and Nalini 2006 | |
Sexual function increasing effect | Black pepper | Fruit extracts potentially affected the sexual drive in male mice by exhibiting a shorter courtship latency. | Sutyarso et al. 2015 |
Nutmeg (50% ethanolic extract) | Increased the sexual activity of male rats by increasing the mounting, and intromission frequency, and intromission latency. | Tajuddin et al. 2005 | |
Brain functioning | Black pepper (piperine) | Exhibited anti-depression like property and cognitive enhancing activity. | Wattanathorn et al. 2008 |
Ginger | Red ginger had a higher protective effect against Fe2+ induced lipid peroxidation compared to the white ginger to protect the brain from oxidative stress. | Oboh et al. 2012 | |
Depressive disorders | Black pepper (piperine) and turmeric (curcumin) | Piperine in combination with curcumin exhibited neurotransmitter enhancing, anti-immobility, and monoamine oxidase inhibitory effects. | Bhutani et al. 2009 |
Skin disease | Cardamom (essential oil) | Inhibited the production of vascular cell adhesion molecule 1 and macrophage colony-stimulating factor in an in vitro skin disease model. | Han and Parker 2017 |
Wound healing | Onion | Inhibited the proliferation of human fibroblasts, thus it may prevent pathological tissue outgrowth, especially in patients with keloids. | Pikula et al. 2014 |
Reduce heavy metals | Coriander leaves | Decreased heavy metals (Pb, Hg, and Cu) from contaminated lorjuk meat. | Winarti et al. 2018 |