Journal of Food Bioactives, ISSN 2637-8752 print, 2637-8779 online
Journal website www.isnff-jfb.com

Review

Volume 8, December 2019, pages 6-41


Bioavailability and metabolism of food bioactives and their health effects: a review

Figures

Figure 1.
Figure 1. Phenolic acids (a) 4-hydroxybenzoic acid and (b) 4-hydroxycinnamic acid.
Figure 2.
Figure 2. Basic structures of flavonoids.
Figure 3.
Figure 3. Structures of proanthocyanidins.
Figure 4.
Figure 4. Structure of hydrolyzable tannins and their monomeric compounds.
Figure 5.
Figure 5. Process of bioavailability and metabolism of food polyphenols (Kemperman et al., 2010; Neilson et al., 2017; Viskupičová et al., 2008).
Figure 6.
Figure 6. Examples of myricetin metabolites (a, 3,5-dihydroxyphenylacetic acid; b, 3,4,5-trihydroxyphenylacetic acid) (Lin et al., 2012; Vissiennon et al., 2012).
Figure 7.
Figure 7. Examples of catechin metabolites (Serra et al., 2011).
Figure 8.
Figure 8. Proposed metabolic pathway of epicatechin (adopted from Roowi et al., 2010).
Figure 9.
Figure 9. Metabolic pathway of diadzein (Braune and Blaut, 2011, 2016; Frankenfeld, 2012; Lee et al., 2017; Stevens and Maier, 2016).
Figure 10.
Figure 10. Colonic metabolic fermentation of tyrosol, hydroxytyrosol and hydroxytyrosol acetate (adopted from Mosele et al., 2014).
Figure 11.
Figure 11. Colonic metabolic fermentation of oleuropein (adopted from Mosele et al., 2014).
Figure 12.
Figure 12. Human intestinal bacteria conversion of various plant lignans. Blue line: known bacteria and Red line: unknown bacteria (adopted from Clavel et al., 2006).

Tables

Table 1. Classification of phenolic and polyphenolic compounds
 
ClassSubgroupExample
Phenolic acidBenzoic acidProtocatechuic acid
Vanillic acid
Gallic acid
Cinnamic acidp-Coumaric acid
Caffeic acid
Chlorogenic acid
Sinapic acid
StilbeneResveratrol
Pterostilbene
FlavonoidFlavonolQuercetin
Kaempferol
Myricetin
FlavonesApigenin
Acacetin
Luteolin
FlavanoneNaringenin
Hesperetin
FlavanolCatechin
Epicatechin
Epigallocatechin
Epigallocatechin gallate
AnthocyanidinCyanidin
Malvidin
Petunidin
IsoflavonesGenistein
Daidzin
LignanSecoisolariciresinol
Matairesinol
Syringaresinol
TanninHydrolyzableGallotannin
Ellagitannin
Tannic acid
CondensedProanthocyanidin

 

Table 2. Different types of flavonoids based on the position of their substituents
 
Ring position3573′4′5′
1Narayana et al., 2001; 2Graf et al., 2005; 3Shahidi and Naczk, 2003. -O-Me, Methoxy; -O-Glu, Glucosyl; -O-R, Alkoxy; and G, Gallate.
Flavonols1
  KaempferolOHOHOHHOHH
  MyricetinOHOHOHOHOHOH
  QuercetinOHOHOHOHOHH
Flavonones1
  HesperetinHOHOHOHO-MeH
  NaringinHOHO-RHOHH
Flavones1
  ApigeninHOHOHHOHH
  LuteolinHOHOHOHOHH
Anthocyanidins2
  CyanidinOHOHOHOHOHH
  MalvidinOHOHOHOCH3OHOCH3
  PetunidinOHOHOHOCH3OHH
Flavanols3
  Catechin/EpicatechinOHOHOHOHOHH
  GallocatechinOHOHOHOHOHOH
  EpigallocatechinOHOHOHOHOHOH
  Epigallocatechin gallateGOHOHOHOHOH
Isoflavones3
  GenisteinOHOHHOHH
  DaidzinHO-GluHOHH
  DaidzeinHHOHHOHH

 

Table 3. Metabolites found in in vitro colonic fermented food matrix
 
Food sampleMetabolitesParent ion [M-H] (m/z)Fragment ions (m/z)
Data extracted from Dall’Asta et al. (2012).
Raspberriesprotocatechuic acid153109
benzoic acid12177
Blueberriesgallic acid169125
coumaric acid163119
protocatechuic acid153109
quinic acid19185
dihydrocaffeic acid18159, 137
hydroxybenzoic acid13793
Blackberriesprotocatechuic acid153109
Strawberriesgallic acid169125
quinic acid19185
Onion(3,4-dihydroxyphenyl)acetic acid167123
phloroglucinol12551
Oat brandihydroferulic acid195136
dihydrosinapic acid225151
Wheat brandihydroferulic acid195136
dihydrosinapic acid225151
Flaxseedprotocatechuic acid153109
dihydroferulic acid195136
homovanillic acid181137
enterodiol301253
enterolactone297253
dihydrocaffeic acid18159, 137
Dark chocolate5-(3′,4′-dihydroxyphenyl)-γ-valerolactone207163
(3,4-dihydroxyphenyl)acetic acid167123
protocatechuic acid153109
hydroxybenzoic acid13793
salicylic acid13793
Orange juicedihydroferulic acid195136
sinapic acid223149, 208
protocatechuic acid153109
Apple juicequinic acid19185
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone207163
dihydrocaffeic acid18159, 137
protocatechuic acid153109
Pomegranate juicegallic acid169125
pyrogallol12551, 41
phlorogucinol12551
syringic acid197153, 182
protocatechuic acid153109
Black teaphlorogucinol12551
pyrogallol12551, 41
coumaric acid163119
gallic acid169125
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone207163
5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone223179
5-(3′-hydroxyphenyl)-γ-valerolactone191147
protocatechuic acid153109
dihydrocaffeic acid18159, 137
homovanillic acid181137
quinic acid19185
Coffeecaffeic acid179135
dihydroferulic acid195136
quinic acid19185
dihydrocaffeic acid18159, 137
ferulic acid193134
protocatechuic acid153109
hydroxybenzoic acid13793
Green teaphloroglucinol12551
pyrogallol12551, 41
gallic acid169125
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone207163
5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone223179
protocatechuic acid153109
dihydrocaffeic acid18159, 137
5-(3′-hydroxyphenyl)-γ-valerolactone191147
quinic acid19185
Red wine5-(3′,4′-dihydroxyphenyl)-γ-valerolactone207163
3-(3-hydroxyphenyl) propionic acid165121
protocatechuic acid153109
gallic acid169125
pyrogallol12551, 41
phloroglucinol12551
coumaric acid163119
quinic acid19185