Journal of Food Bioactives, ISSN 2637-8752 print, 2637-8779 online
Journal website www.isnff-jfb.com

Review

Volume 4, Number , December 2018, pages 88-98


Role of hydrophobicity in food peptide functionality and bioactivity

Figures

Figure 1.
Figure 1.

Role of hydrophobicity in several functionalities and health-related bioactivities of food protein-derived peptides.

Figure 2.
Figure 2.

Enzymatic hydrolysis in producing hydrophobic peptides for stabilizing emulsions.

Figure 3.
Figure 3.

Various applications of peptide self-assembly.

Tables

Table 1. Amino acid hydrophobicity scales
 
Amino acidSymbolHydrophobicity Scale
Kyte and Doolittle (1982)Eisenberg et al. (1984)Wolfenden et al. (1983)Cornette et al. (1987)Wimley and White (1996)Hopp and Woods (1983)
IsoleucineIle (I)4.501.380.884.800.31−1.80
ValineVal (V)4.201.080.864.70−0.07−1.50
LeucineLeu (L)3.801.060.855.700.56−1.80
PhenylalaninePhe (F)2.801.190.884.401.13−2.50
CysteineCys (C)2.500.290.914.100.24−1.00
MethionineMet (M)1.900.640.854.200.23−1.30
AlanineAla (A)1.800.620.740.20−0.17−0.50
GlycineGly (G)−0.400.480.720.00−0.010.00
ThreonineThr (T)−0.70−0.050.70−1.90−0.14−0.40
SerineSer (S)−0.80−0.180.66−0.50−0.130.30
TryptophanTrp (W)−0.900.810.851.001.85−3.40
TyrosineTyr (Y)−1.300.260.763.200.94−2.30
ProlinePro (P)−1.600.120.64−2.20−0.450.00
HistidineHis (H)−3.20−0.400.780.50−0.96−0.50
Glutamic acidGlu (E)−3.50−0.740.62−1.80−2.023.00
GlutamineGln (Q)−3.50−0.850.62−2.80−0.580.20
Aspartic acidAsp (D)−3.50−0.900.62−3.10−1.233.00
AsparagineAsn (N)−3.50−0.780.63−0.50−0.420.20
LysineLys (K)−3.90−1.500.52−3.10−0.993.00
ArginineArg (R)−4.50−2.530.641.40−0.813.00

 

Table 2. Bioinformatic tools for calculating the hydrophobicity of peptides
 
Bioinformatic toolsPlatform providerWebsite
Peptide 2.0Peptide 2.0 Inc.https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php
Peptide property toolGenescripthttps://www.genscript.com/tools/peptide-property-calculator
Peptide analysing toolThermoFisher Scientifichttps://www.thermofisher.com/ca/en/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html
Peptide property calculatorBiosynthesishttps://www.biosyn.com/peptidepropertycalculator/peptidepropertycalculator.aspx
PepCalc.comInnovagenhttps://pepcalc.com/
Prot pi peptide toolProt pihttps://www.protpi.ch/Calculator/PeptideTool
Peptide property calculatorNorthwestern Universityhttp://biotools.nubic.northwestern.edu/proteincalc.html
PLATINUMLaboratory of Biomolecular Modelling, Russian Academy of Scienceshttps://model.nmr.ru/platinum/
Peptide Library Design and Calculator ToolMillipore Sigmahttps://www.sigmaaldrich.com/technical-documents/articles/biology/peptide-library-design-and-calculator-tool.html
GPMAW liteAlphalyse Inc.https://www.alphalyse.com/customer-support/gpmaw-lite-bioinformatics-tool/start-gpmaw-lite/
R-softwareR Core Teamhttps://www.r-project.org/contributors.html

 

Table 3. Food protein-derived bioactive peptides, with highlighted hydrophobic regions, and their respective bioactivities
 
SequenceBioactivityExperimental analysisReference
Phe-Asp-Ser-Gly-Pro-Ala-Gly-Val-LeuAntioxidant capacityIn vitro analysis with human lung fibroblastsMendis et al. (2005)
Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg
Gly-Val-Ser-Asn-Ala-Ala-Val-Val-Ala-Gly-Gly-HisAntioxidant capacityIn vitro and ex vivo analysis on mouse fibroblastsCoda et al. (2012)
Asp-Ala-Gln-Glu-Phe-Lys-Arg
Tyr-AlaAntioxidant capacityIn vitro analysis using standard methods involving ABTS, DPPH and superoxide anionTang et al. (2010)
Glu-Gln-Arg-Pro-ArgAnticancer activityIn vitro analysis in diverse normal and cancer cell culturesKannana et al. (2010)
Gly-Gly-Arg-Lys-Gln-Gly-Gln-His-Gln-Gln-Glu-GluImmunostimulatingIn vitro and in vivo analysis in cell cultures and mice modelsGusa and Tani (2009)
Val-Ile-LysAnti-inflammatory activityIn vitro analysis in murine macrophage cell lines(Dia et al (2014)
Tyr-Val-Pro-Gly-ProAnticancer activityIn vitro analysis on prostate cancer cellsWu et al. (2018)
Ile-ProDPP-IV inhibitionIn vitro analysisHatanaka et al. (2012)
Leu-Pro
Lys-AlaDPP-IV inhibitionIn vitro analysisGallego et al. (2014)
Ala-Ala-Ala-Thr-Pro
Arg-TrpAntimicrobial activityIncrease in antimicrobial activity and hemolysis of red blood cells with increasing peptide chain lengthLiu et al. (2007)
Arg-Trp-Arg-Trp
Arg-Trp-Arg-Trp-Arg-Trp
Arg-Trp-Arg-Trp-Arg-Trp-Arg-Trp
Arg-Trp-Arg-Trp-Arg-Trp-Arg-Trp-Arg-Trp
Val-Gln-Trp-Arg-Ile-Arg-Val-Ala-Val-Ile-Arg-LysAntimicrobial activity60 mg/kg dose shown to be as effective as vancomycin in rats with Staphylococcus aureusWu et al. (2014)
Val-Leu-Leu-Val-Thr-Leu-Thr-Arg-Leu-His-Gln-Arg-Gly-Val-Ile-Tyr-Arg-Lys-Trp-Arg-His-Phe-Ser-Gly-Arg-Lys-Tyr-ArgAntimicrobial activityAntimicrobial studies with Escherichia coli DH5α, Bacillus subtilis AZ54, Staphylococcus aureus ATCC 6538 P and Pseudomonas aeruginosa strainsPane et al. (2017)
Glu-Lys-Glu-Arg-Glu-Arg-GlnACE inhibitionOral administration to spontaneously hypertensive rats (SHR) at a dose of 10 mg/kg body weightKatayama et al. (2008)
Lys-Arg-Gln-Lys-Tyr-Asp-Ile
Lys-Arg-Val-Ile-Gln-TryACE inhibitionOral administration to SHR at a dose of 10 mg/kg body weightMuguruma et al. (2009)
Arg-Pro-ArgACE inhibitionOral administration to SHR at a dose of 1 mg/kg body weightEscudero et al. (2012)
Lys-Ala-Pro-Val-Ala
Pro-Thr-Pro-Val-Pro