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Abstract

Fruits and vegetables are integral parts of the daily diet and consist of inedible peel, pomace, and kernel, which 
are rich in bioactive compounds (BACs). These BACs can be extracted by microwave-assisted extraction using mi-
crowave energy. Microwaves are non-ionising electromagnetic radiations with a frequency range of 300 MHz to 
300 GHz. Its instrumentation includes a magnetron, waveguide, applicator, and circulator. Microwave extractors 
are of two types: open and closed. The former is used to extract thermoinsensitive compounds, and the latter to 
extract thermolabile compounds. Microwave extractors work with dual mechanisms called dipolar rotation and 
ionic conduction. They help to rupture the cell wall and release BACs into the solvent. The factors viz., solvent 
type and concentration, microwave power, extraction time, solvent-to-sample ratio, extraction temperature, and 
sample properties affect the extraction efficiency. Microwave-assisted extraction provides benefits such as higher 
yields, low extraction time, low solvent consumption, and compatibility with other methods.
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Fruits and vegetables are enriched with nutritious compounds 
such as vitamins, minerals, fibres, phenolics and carotenoids, 
making them an integral part of the human diet. For consump-
tion, some portions like peel, rind, core, seed, pomace, and kernel 
are removed, considered inedible, and waste. However, they are 
rich in bioactive compounds (BACs) like pectin, dietary fibres, 
tannins, phenols, carotenoids, and anthocyanins (Table 1). They 
are potential sources of antioxidant, antimicrobial, and antican-
cerous properties (Daduang et al., 2011).

Banana peel, which is 30% of the total fruit weight, is rich in di-
etary fibres and phenolic compounds (Gonzalez-Montelongo et al., 
2010). Mangosteen fruit rind, which accounts for two-thirds of its 
weight, is rich in anthocyanins (Netravati et al., 2024). Pineapple 
waste comprises of 70% of total fruit weight, which includes peel, 
core, trimmings, and crown, which are rich in bromelain, proteins, 

and peptides (Mala et al., 2021). Apple pomace 30% of raw mate-
rial) is rich in polyphenols, triterpenes, fibres, and vitamins (Cristi-
na-Gabriela et al., 2012). Watermelon rind accounts for one-third of 
total fruit mass and can be used as raw material for pectin prepara-
tion (Petkowicz et al., 2017). Avocado seeds constitute 13–17% of 
the fresh fruit and contain tannins, phenolic acids, and flavonoids 
(Araujo et al., 2020). These BACs from food waste can be extracted 
and incorporated into diets to overcome undernourishment, affect-
ing around 735 million people globally (von Grebmer et al., 2023).

On the other hand, food waste disposal in the environment caus-
es adverse effects to it. The incineration of food waste releases acid 
gases and furans, and landfills release methane, which is a signifi-
cant greenhouse gas (Khan, 2021). In the above context, there is a 
dire need and sound scope for valorising food waste. Extraction is 
one sustainable way for the valorisation of food waste.

The extraction of BACs can be done by using different con-
ventional methods. However, they have drawbacks like more time 
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consumption (Carbone et al., 2020), higher solvent requirement, 
low efficiency, and hydrolytic degradation of some compounds 
(Sarfarazi et al., 2020). In this regard, we need an economical and 
eco-friendly technology that can give higher yields in a short time 
without degradation of BACs. One such technology is microwave-
assisted extraction (MAE).

These are non-ionising radiations that contain two oscillating per-
pendicular fields, viz., electric field and magnetic field. They lie 
between the frequency range of 300 MHz to 300 GHz (Airouyuwa 
et al., 2023), with a wavelength range of 1 mm to 1 m (Kaatze, 
1995; Letellier and Budzinski, 1999; Pinto et al., 2021). The en-
ergy of a microwave photon is 0.037 kcal/mol (Gaba and Dhingra, 
2011), which is very low compared to the energy required to break 
a molecular bond, and speed is way faster than the time required 
by a molecule to relax.

Microwaves can be used for diverse purposes like sterilisation (Po-
tato, onion, carrot, and red pepper were sterilised at 100 °C for 
three min. to control Bacillus amyloliquefaciens, Cho and Chung, 
2020), pasteurisation (Apple juice of Cv. Golden delicious was 
pasteurised at 80–90 °C (600–720 W) for 25 s, Mendes-Oliveira et 
al., 2020), drying (spinach leaves were dried at 750 W for 290 to 
430 s, Ozkan et al., 2007), thawing (strawberry and mulberry fro-

zen fruits thawed at 184 W, four °C preserved the antioxidant ca-
pacity, Le et al., 2018 ), blanching (Broccoli Cv. Empress blanched 
at 700 W for four min. retained its properties in long term storage, 
Brewer et al., 1995), and extraction (Optimum quality phenolic 
compounds were extracted from grape pomace at 1,000 W, 10 min 
(Da Rocha and Norena, 2020). This review emphasises the extrac-
tion of BACs using microwaves.

The polar solvents that are in contact with the sample are heated by 
using microwave energy to extract the BACs present in the sample 
(Sharma and Dash, 2021).

Microwave energy is delivered through polar solvents to gen-
erate heat by converting electromagnetic radiation into thermal 
energy. Dielectric constants and dissipation factors are crucial 
for transforming electromagnetic radiation into thermal energy 
(Pimentel-Moral et al., 2018). Microwave-assisted extraction in-
cludes three sequential phases: desorption, internal diffusion, and 
external diffusion. In the first phase, the BACs present in the sam-
ple matrix are separated from the active sites of the sample. The 
second phase involves the diffusion of solvent into the sample ma-
trix, and the last phase consists of the release of solutes from the 
sample matrix into the solvent (Thaiphanit et al., 2020).

Microwave extractors majorly include four major components: 

1 Tomato waste Pectin Lasunon and Sengkhamparn (2022)

2 Blueberry bagasse Anthocyanins Ferreira et al. (2020)

3 Black tea waste Caffeine and catechin Serdar et al. (2017)

4 Onion peel Phenols and flavonoids Das and Mandal (2015)

5 Mango peel Phenols Dorta et al. (2013)

6 Grape seed Phenols Krishnaswamy et al. (2013)

7 Annatto seed Polyphenols and carotenoids Quintero Quiroz et al. (2019)

8 Grapevine residue Polyphenols Jesus et al. (2019)

9 Eggplant peel Phenols and anthocyanins Doulabi et al. (2020)

10 Hibiscus calyx Anthocyanins Cassol et al. (2019)

11 Date seed Phenolic compounds, dietary fibre, and vitamins Ranasinghe et al. (2024)

12 Black carrot pomace Polyphenols Kumar et al. (2019)

13 Chaya leaves Phenols Rodrigues et al. (2020)

14 Fig leaves Polyphenols and furanocoumarins Yu et al. (2020)

15 Jackfruit peel Pectin Govindaraj et al. (2018)

16 Mango peel Pectin, polyphenols Rojas et al. (2015)

17 Pistachio shell Phenolic compounds Maccarronello et al. (2024)

18 Pomegranate peel Phenolic compounds Kaderides et al. (2019)

19 Saffron tepal Flavanols, anthocyanins Cerda-Bernad et al. (2022)

20 Melon peel Pectic polysaccharide Golbargi et al. (2021)
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a magnetron (microwave generator), waveguide (propagates the 
microwaves into the microwave cavity), applicator (extraction 
vessel), and circulator (allows microwaves to pass forward move-
ment only) (Figure 1) (De Castro and Priego-Capote, 2011). These 
are of two types, viz., closed type and open type extractors (De 
Castro and Castillo-Peinado, 2016; Li et al., 2004)

Closed vessel extractors (Figure 2) are usually multimode type, 
and the microwave treatment is done at high pressure (Pressurised 
extraction) with a random dispersion of microwaves inside the cav-
ity. The turntable helps bring an even distribution of microwaves 
inside the cavity regardless of the position of the sample. Due to 
the elevated pressure levels inside the vessel, higher temperatures 
can be easily achieved. There is no significant loss of volatiles in 
this. Extraction can be done simultaneously for multiple samples. 
The disadvantage of this method is that it cannot be used to extract 
thermolabile compounds (Delazar et al., 2012).

In open vessel extractors (Figure 3), the microwave treatment is 
done at atmospheric pressure and given only to a specified region 
(Focused extraction) where the sample is immersed in the solvent 
that absorbs microwaves (Li et al., 2004). The upper region of the 
flask remains calm as the glass is transparent to microwaves. Fur-
ther cooling is brought by using a water condenser. This is safer to 
use for the extraction of thermolabile compounds as it is operated 
at atmospheric pressure and low temperature. The disadvantage of 
this method is that multiple samples can not be operated simultane-
ously (Delazar et al., 2012).

During MAE, microwaves pass through solvent and plant parti-
cles. The latter contains vacuoles with a certain moisture content 
(Chan et al., 2016). Moisture heating occurs due to dual mecha-
nisms called ionic conduction and dipolar rotation (Gomez et al., 
2020). Ionic conduction (Figure 4) refers to the electrophoretic 
migration of ions in accordance with the changing electric field, 
which generates friction between ions and the medium, resulting 
in the liberation of heat. Dipole rotation (Figure 5) arises when the 
permanent dipole tries to align its phase in line with the chang-
ing electromagnetic field (Veggi et al., 2012). The continuous ran-
domised forced movement results in heating (Mendes et al., 2016). 
These mechanisms result in the vaporisation of moisture and a tre-
mendous increase in internal pressure inside the cell matrix, which 
leads to rupture of the cell wall and allows active leach out of phy-
toconstituents into the solvent (Figure 6) (Dhobi et al., 2009).

Solvent type and concentration, microwave power, extraction time, 
solvent-to-feed ratio, extraction temperature, and sample properties 
affect the efficiency of MAE (Figure 7) (Xie et al., 2014; Bachtler 
and Bart, 2021; Daliri Sosefi et al., 2024; Elakremi et al., 2022).

.  
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The Dielectric constant, solvent penetration and its interaction with 
the sample matrix, molecular size, and solubility of the compound 

of interest are considered for improving extraction efficiency. A 
high dielectric constant of the solvent will enhance the extraction 
process more rapidly (Ihsanpuro et al., 2022). The solvent volume 
must be sufficient to immerse the sample throughout the extraction 
process (Veggi et al., 2012). Solvents with lower molecular size 
and higher polarity will enhance extraction yields by improving 

.  

.  

.  

.  
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heating and making it easy to penetrate into the solvent. Methanol 
gives a higher extraction yield, having a lower molecular size and 
higher polarity, but ethanol is the widely used solvent because of 

safety concerns (Chan et al., 2017). Karami et al. (2015) investi-
gated the effect of solvents (ethanol 80%, methanol 80% or water) 
on the yield of phenolic compounds from liquorice roots. From the 
study, they inferred that the higher extract was obtained by ethanol; 
it also improved the extract’s total phenolic content and antioxi-
dant activity.

Microwave power influences the quantity of extracted compounds 
and extraction time. Elevated power levels provide a higher yield. 
It causes localised heating in the sample, which helps destroy the 
plant matrix so that the BACs can be diffused into the solvent. 
The increase in power level will increase the extraction yield in a 
shorter time. Conversely, a high-power level decreases the extrac-
tion yield by degrading the thermolabile compounds (Veggi et al., 
2012). Luo et al. (2021) conducted a study on antioxidant activity 
and total phenolic content of Akebia trifoliate peel extracts at dif-
ferent power levels from 300–800 W. From the study, they inferred 
that the total phenolic content and antioxidant showed a positive 
trend from 300–500 W, above this power levels they are decreased 
significantly. Doulabi et al. (2020) conducted a study to evaluate 
MAE’s effect on eggplant peel by-products’ bioactive compounds. 
They reported that extraction yield was increased with an increase 
in microwave power from 100–300 W. Bioactive active alkaloids 
were extracted from lotus plumules using microwave-assisted ex-
traction (Xiong et al., 2016). They reported that an increase in the 
liquid-to-solid ratio from 5:1 to 20:1 increased the extraction yield, 
and thereafter, there was no rise in yield.

Extraction time usually correlates with microwave power and 
shows an inverse relationship. At each power level, an optimum 

.  

.  



Journal of Food Bioactives | www.isnff-jfb.com46

Microwave-assisted extraction of bioactives Kumar et al.

extraction time will give a better extraction yield (Chan et al., 
2017). Dielectric properties of the solvent also influence it. The 
solvents with higher dielectric constant heat up highly under 
overexposure, thus risking the yield of thermolabile (Veggi et al., 
2012). A study was conducted to determine the effect of extraction 
time on antioxidant activity and total phenolic content of Akebia 
trifoliate peel extract and inferred that an increase in time enhances 
the yield until optimum conditions; later on, it decreased (Luo et 
al., 2021). A study by Alara et al. (2021) reported that the phe-
nolic content increased with an increase in time from two to four 
minutes, and after that, there was a rapid decline in the phenolic 
content in C. papaya leaf.

Temperature is a crucial factor in extraction. Increasing the ex-
traction temperature will lead to higher diffusion, improving the 
release of BACs into the solvent. It also decreases the solvent’s 
viscosity, resulting in easy penetration into the cells and enhanc-
ing solute desorption into the solvent. Higher temperature leads 
to the loss of thermolabile compounds ( ), in-
creased extract impurities, and poor stability of the final extracted 
compound (Bachtler and Bart, 2021). Zheng et al. (2011) extracted 
polysaccharides from pumpkins and studied the effect of extrac-
tion parameters on extraction yield. From the study, they reported 
that a temperature of 70 °C is suitable for breaking analytic matrix 
bonds and gives a higher yield of polysaccharides. At a tempera-
ture of more than 70 °C, the yield of polysaccharides declined and 
gave scorched extract.

Extraction of BACs from an intact plant part is complex and inef-
ficient. The sample’s particle size characterises the amount of dis-
ruption and influences the extraction yield. Smaller particle sizes 
give higher extraction yields, as the diffusivity of the BACs in-
creases with smaller particles due to the larger contact surface area 
(Chan et al., 2017). Particles of large and tiny sizes will reduce the 
extraction yield because of smaller surface area and easy agglom-
eration, respectively (Xiong et al., 2016). Smaller particle size 
gave a higher yield of seed oil (32%) in pomegranate compared 
to the larger particles (11%) under the same extraction conditions, 
i.e., 238 W, 6:1 solvent to sample ratio, and 5 minutes extraction 
time (Keskin Cavdar et al., 2017). some BACs extracted through 
MAE are listed in Table 2.

Microwave-assisted extraction has the advantages such as low 
extraction time (Garrido et al., 2019; Bener et al., 2022) and sol-
vent consumption (Chumnanpaisont et al., 2014; González-de-
Peredo et al., 2022), higher extraction yields (Thaiphanit et al., 
2020), low cost (Dahmoune et al., 2015; Mellinas et al., 2020), 
better potential for automation (Weremfo et al., 2020), low en-
ergy consumption (Sarfarazi et al., 2020), high quality extracts 
(Olalere et al., 2021; Vélez-Erazo et al., 2021), and compatibility 
with other methods.

Despite these benefits, it is adopted only in laboratories due 
to the difficulty in scale-up and optimisation of the process pa-
rameters for extraction of BACs from different samples (Chan et 
al., 2016).

Microwave-assisted extraction is a sustainable technology for 
extracting bioactive compounds from fruit and vegetable waste. 
The extraction process involves the open type and closed type ex-
tractors. Ionic conduction and dipolar rotation are the two critical 
mechanisms involved in the extraction process. The extraction pa-
rameters are specific to each BAC based on the matrix properties. 
This technology gives more extraction yields quickly, with less 
solvent and energy consumption. Microwave-assisted extraction 
plays a crucial role in the extraction of thermolabile compounds 
due to the lower exposure times to heat. Further research has to 
be done to determine the combined abilities of this technology 
with other methods to achieve synergistic effects from both tech-
nologies. Optimisation of extraction parameters, i.e., microwave 
power, extraction time, temperature, and solvent-to-feed ratio is 
required to avail the maximum BACs from the sample.

Not applicable.

Not applicable.
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